
Dynamic placement of resources in Cloud Computing and Network
Applications

Yuval Rochmana,∗, Hanoch Levya, Eli Broshb

aSchool of Computer Science, Tel Aviv University, Ramat Aviv, Tel Aviv 69978
Tel Aviv, Israel

bNexar, Ltd.

Abstract

We address the problem of dynamic resource placement in general networking and cloud computing appli-
cations. We consider a large-scale system faced by time varying and regionally distributed demands for
various resources. The system operator aims at placing the resources across regions to maximize revenues,
and thus needs to address the problem of how to dynamically reposition the resources in reaction to the
time varying demand.

The challenge posed by this setting is to deal with arbitrary multi-dimensional stochastic demands which vary
over time. Under such settings one should provide a tradeoff between optimizing the resource placement as to
meet its demand, and minimizing the number of added and removed resources to the placement. Our analysis
and simulations reveal that optimizing the resource placement may inflict huge resource repositioning costs,
even if the demand has small fluctuations. We therefore propose an algorithmic framework that overcomes
this difficulty and yields very efficient dynamic placements with bounded repositioning costs. Our solution
is developed under a very wide cost model, and thus allows accommodation of many systems. Our solutions
are based on new analytic techniques utilizing graph theory methodologies that can be applied to other
optimization/combinatorial problems.

Keywords: Resource-placement, stochastic, distributed-cloud, graph algorithms.

1. Introduction

Cloud computing has emerged as an attractive solution for building large scale services and geographically
distributed applications over the Internet. Popular cloud computing platforms like Amazon EC2 [1] and
Microsoft Azure [2] organize a shared pool of (virtual) servers 1 in geographically distributed data-centers
to enable on-demand delivery of computer resources at scale. By using a distributed cloud platform, the
service provider can place server resources at geographical areas close to its users to provide adequate level
of service quality, e.g., low response times, and for better resiliency.

To engineer such a system, the service provider needs to balance two main factors: (a) the revenue from
serving a demand, where it is typically better to serve a demand by a resource located in the same area
rather than by one located remotely; (b) the cost of placing a resource, which reflects the cost of renting a

∗Corresponding author
Email addresses: yuvalroc@gmail.com (Yuval Rochman), hanoch@cs.tau.ac.il (Hanoch Levy)

1Virtual servers are also called instances or virtual machines in the cloud computing community.

Preprint submitted to Elsevier April 21, 2017

server in the cloud. For example, Amazon EC2 bills server instance usage according to a pay-per-use plan
where the price varies depending on the instance type and the data-center location. The service provider
thus deals with regionally distributed demands for various resources by aiming to find a low cost placement
of resources at the regions that also provides high service quality.

It has been observed that the demand in such settings can exhibit large variations. It can vary over time,
changing significantly (by an order of magnitude) over the course of a day due to, for example, changes in the
amount of available users [3]; and can also sustain large spikes due to, for example, unpredicted datacenter
failures [4]. To obtain a cost effective operation of the system, the provider needs to dynamically adapt to
demand changes, and periodically reposition allocated resources.

In this paper, we address the general problem of how to dynamically place resources of multiple types over
geographically distributed regions in response to changing stochastic demands. To this end, we develop a
general model which incorporates the major cost parameters that affect the design of resource placement
systems. The stochastic demand is captured as an arbitrary multi dimensional distribution which varies
over time.

We analyze the sensitivity of optimal placements to changes in the (stochastic) demand. Our results reveal
that changing the optimal placement in reaction to demand deviations can inflict huge repositioning costs,
and, that in contrast, these small demand deviations result in minor effect on the profit. Therefore, a
practical treatment of the placement problem should account for repositioning costs 2 and possibly should
limit the number of resources that can be repositioned.

For this analysis we rely on mapping the problem to a min-cost flow problem (in graph theory), a technique
that is usually intended to solve combinatorial problems efficiently. However, we demonstrate that such a
mapping, in addition, yields profit sensitivity analysis in placement problems in general.

Addressing the difficulties introduced by large repositions we formulate the constrained (resource) reposition
problem in reaction to changing demands as one that finds an optimal placement under a constraint of
allowing up to a fixed number of additions or removals of resources. This placement problem is challenging;
Not only that it needs to deal with arbitrary stochastic demands which can vary over time, but we also
establish theoretical strong evidence that under the wide setting of this work the problem at large is hard
(that is, it is expected that a polynomial time algorithm cannot solve the problem). We therefore develop
a heuristic algorithm called SCO that solves the reposition problem, and is guaranteed to find the optimal
solution in several important special cases. We show that one can implement SCO in polynomial time, using
techniques in graph theory and min-cost flow.

For a multi-period online setting, whereby in every period (opportunity to reposition the resources) only the
(stochastic) demand of the current period is known, we propose Hybrid, an algorithm that preforms small
resource repositioning when the demand changes are small and conducts SCO when they are large.

We use numerical analysis to evaluate our algorithms under practical workloads and conditions, i.e., using
Amazon’s EC2 on-demand image costs and realistic demand arrival rates. Our results demonstrate that
the proposed Hybrid algorithm can achieve near optimal placement (its cost is higher up to 1.4% from the
optimal placement cost), while maintaining a low reposition cost. In particular, the reposition cost of the
proposed Hybrid algorithm is significantly lower than that of an optimal placement (more than 65%) as well
as that of a proportional mean-based placement, a simple and widely-used scheme [5] wherein the number
of servers is proportional to the average demand.

For the sake of completeness we also examine the unconstrained reposition problem with reposition costs; in
this problem the number of repositions are not constrained but each of them incurs cost. Our analysis can
be extended to provide an exact solution for this problem.

2In a cloud environment, reposition costs can capture the overhead of setting up new server instances and tearing down old
ones.

2

𝐿𝐿𝑖𝑛 = 4
𝐿𝑊𝑖𝑛 = 3

Data center 1
𝐿𝐿𝑖𝑛
1 = 2

𝐿𝑊𝑖𝑛
1 = 2

Data center 2 𝐿𝐿𝑖𝑛
2 = 2

𝐿𝑊𝑖𝑛
2 = 1

𝐿1 = 4
𝐿2 = 3

1Pr[]LinD x
1Pr[]WinD x

2Pr[]LinD x 2Pr[]WinD x

resources

demand

Resource Placement

Figure 1: An example of the system. Note that the placement is L1
Lin = L2

Win = 2, L2
Lin = 2, L2

Win = 1 etc.

Although we focus our presentation on a cloud environment, the generality of our model allows it to serve
as a building block in a variety of dynamic resource placement problems spanning from geo-distributed
inventory problems to personnel allocation in multi contact center settings.

The rest of the paper is organized as follows. Section 2 presents our model and the problem. Section 3
establishes fundamental sensitivity properties of resource repositioning. Section 4 proves the hardness of
the constrained reposition problem. Section 5 presents the polynomial time SCO algorithm for solving the
problem. Section 6 presents the Hybrid algorithm. Section 7 presents extensions of the model and the
solutions, including to the unconstrained reposition problem with reposition costs and including accounting
for the costs of unsatisfied requests. Section 8 provides performance evaluation of the system through
numerical results. Section 9 describes previous work. Finally, Section 10 concludes this paper.

2. The model and the problem

For the sake of exposition, we start by formulating the model used for the dynamic and static placement
problems, and then describe these problems. Although we focus our examples on a SaaS (Software as a
Service) service provider that rents servers from a cloud provider, the generality of our model allows solving
a variety of resource placement problems spanning from server allocation in server farms to personnel
placement in call centers.

2.1. The model

We consider a provider that aims to maximize the profit from servicing requests by placing resources in
k areas indexed by 1, 2, . . . , k. The resources have different types indexed by 1, 2, . . . ,m, and a type i
resource can only grant up to Bi type i requests. Requests for these resources arrive stochastically, and can
be granted locally by a resource in the same area or granted remotely from a different area. We do not
assume any correlation of these arrivals, neither make any assumptions regarding their distributions.

The profit is a function composed of the revenue of granting demand minus the cost associated with placing
and operating the resources. The profit functions are determined by two variables in our model: the arbitrary
demand D = (Dj

i) and the provider’s resource placement L = (Lji) for i = 1, 2, . . .m and j = 1, 2, . . . k. The

notations Lji , D
i
j denote respectively the number of type i requests made and type i resources placed in area

j. An example of the system topology and placement (of Windows and Linux resources) in response to user
demand is depicted in Figure 1.

A major challenge of the profit function is to capture both the revenue differentiation between serving
local and serving remote requests, as well as the complex costs associated with placing and operating the
resources in these areas. Fortunately, as we will show below, we can model the cost differential between
servicing remote and local requests (as well as optimizing this service); further for any realization d of D, we

3

can rest our analysis on variable transformation that makes the analysis feasible through a semi-separable
function. The function form is

P (L, d) =

m∑
i=1

k∑
j=1

ζji (Lji , d
j
i) +

m∑
i=1

ζi(Li, di) +

k∑
j=1

ζj(Lj), (1)

where di =
∑k
j=1 d

j
i , Li =

∑k
j=1 L

j
i are respectively the number of type i requests and type i resources from

all areas, and Lj =
∑n
i=1 L

j
i is the number of area-j resources of all types. The functions ζi, ζ

j and ζji are
called the marginal profit functions, or, for short, the marginal functions.

The function ζi represents the basic profit composed of the revenue of serving a type i request, regardless of
serving it locally or by remote resource, minus the cost of operating or manufacturing the type i-resources.
We assume that the profit gained by satisfying a type i request is a constant Ri > 0. The number of satisfied
type i requests is the minimum between the demand di of type i requests and the supply, i.e., the total
number of requests that can be granted by type i resources, Li · Bi (Bi - the number of requests a type i
resource can serve concurrently). This follows a common structure of the profit as the difference between
the revenue and the non-negative cost function Ci : N→ R+:

ζi(Li, di) = Ri ·min(Li ·Bi, di)− Ci(Li). (2)

The function ζji is the additional local profit derived from allocating resources in a specific region, repre-
senting the avoidance of extra bandwidth and latency costs of remote service or any other region-specific
benefits and expenses. It is composed of the additional revenue function of granting requests locally, and
the (non-negative) additional cost inflicted by placing a resource in a specific region. It follows a similar
formula to Eq. (2):

ζji (Lji , d
j
i) = Rji ·min(Lji ·Bi, d

j
i)− C

j
i (Lji), (3)

where Rji > 0 is the profit of granting a type i request in region j.

Finally, the function ζj represents only the (non-negative) regional costs Cj associated with the placement,
such as physical limitations over the number of placed resources in an area and regional taxes. The function
form is expressed as follows:

ζj(Lj) = −Cj(Lj). (4)

As stated above, the combination of Equations (1),(2),(3) and (4) allows modeling cost differentiation
between local and remote service of requests and capturing the different costs. While the cost depends on
the placement and is not affected by demand, the revenues are affected. It leads us to the next challenge
when defining a profit function for this setting.

We must capture the fact that the revenue from any allocated resource is stochastic, since the demand
is stochastic. For this purpose, we describe the profit as the expectation of P (from Eq. (1)) where the
expectation is over a demand distribution D. Substituting this into in Eqs.(2),(3),(4) the profit function in
Eq. (1) gets the following form:

P (L,D) =

m∑
i=1

k∑
j=1

ζji (Lji , D
j
i) +

m∑
i=1

ζi(Li, Di) +

k∑
j=1

ζj(Lj), (5)

4

𝐿𝐿𝑖𝑛 = 4
𝐿𝑊𝑖𝑛 = 4

Data center 1
Data center 2

1Pr[(1)]LinD t x  1Pr[(1)]WinD t x 

2Pr[(1)]LinD t x  2Pr[(1)]WinD t x 

resources

demand

Resource Reposition (at period t+1)

remove add

Figure 2: Reposition of resources as response to demand change: Remove Windows resources from region 1 and add in region
2. The initial placement L(t) is given in Figure 1.

where,

ζji (Lji , D
j
i) = Rji · EDji [min(Lji ·Bi, D

j
i)]− C

j
i (Lji), (6)

ζi(Li, Di) = Ri · EDi [min(Li ·Bi, Di)]− Ci(Lji), (7)

ζj(Lj) = −Cj(Lj), (8)

are the marginal functions.

Remark 1 (Costs of un-served demands). For simplicity of the model exposition, the model descrip-
tion given above used throughout the paper assumes that demands are not served incur no specific cost. In
Appendix A we extend the model to account for costs that are incurred by the system due to the un-served
demands.

2.2. Problem formulation

The problem we deal with in this paper is addressed under a dynamic setting challenge. That means, not
only that the profit is a complex general function and the demand is arbitrary stochastic, the (stochastic)
demand random variable also varies over time. This can model the difference between the stochastic demands
during day and night, the changes occurring between busy hours (rush hours) to non-busy hours, change of
setting (e.g. due to area failure) and many other changes.

A naive strategy to react to the dynamically changing conditions (demand) is to allocate an optimal place-
ment in response to any change. However, it may be infeasible as for sparing with the efforts for temporal
improvement, or due to limitations of operating new or turn off resources. Specifically, the task of resource
reposition may require technical, administrative and management activities that do require time and human
resources, especially when dealing with large scale geo-distributed systems; further the time duration al-
lowed for the repositions may be limited, and thus the combination of these effects implies that the number
of repositions is limited. Since such tasks are normally performed in a central operation site we assume
that the restrictions on number of repositions is global. Thus, the optimal placement problem becomes a
Constrained Reposition Problem: given a placement L(t) at period t what is an optimal placement
with respect to a new demand D(t + 1) that can be achieved under a constraint of allowing up-to r unit
operations (each operation is either a single addition or a single subtraction of a resource). An example of
resource reposition in response to demand change is given in Figure 2.

This problem can be formulated mathematically as follows:

5

max
L(t+1)

ED(t+1)[P (L(t+ 1), D(t+ 1))] (9)

such that

m∑
i=1

k∑
j=1

|Lji (t)− L
j
i (t+ 1)| ≤ r. (10)

Note that if r = ∞, then the problem is to find an optimal placement with respect to a demand D(t + 1)
(and regardless of repositions) 3. This problem is called the Unconstrained Placement Problem. To
simplify the technicalities of the analysis we do not allow placements to contain infinite number of resources,
and bound the size of a placement L by a large enough storage constant s. That means, every placement
should include up to

∑k
j=0 L

j ≤ s resources.

The focus of this paper is on the Constrained Reposition Problem, which we show to be hard to solve, and
for which we provide an Heuristic Solution. The Unconstrained Placement Problem, in contrast, can be
solved by a reduction to a min-cost flow problem (see [6]).

2.3. Assumptions of the marginal profit functions

Apart from the above general profit function structure we assume that given a demand D the marginal
functions gi(n) = ζi(n,D

j
i), g

j
i (n) = ζj(n,Dj

i) and gj(n) = ζj(n) are all concave functions. That means,
a discrete function f : N → R is considered to be concave if its differential ∆g(n) = g(n + 1) − g(n) is
monotonically non-increasing. This is a reasonable assumption as the profit may express diseconomy of
scales; this results mainly from the fact that the expected value of the minimum (see left terms in the right
hand side of Eq. (6), (7)) can be proven to be concave, and also since communications and control may
become more difficult to handle as the number of resources grows.

The concavity property is essential for deriving a solution for the Constrained Reposition Problem (as
described in Section 5).

Remark 2. The marginal cost functions C() in our model allows to express dynamic physical limitations
and bounds over the number of resources allocated. For example, if the system bounds at some point the
number of resources in area j by sj , then we set the area-j marginal cost function to be Cj(x) = ∞ for
x ≥ sj + 1. Using such setting does not contradict the concavity of the marginal profit function.

3. Fundamental Sensitivity Properties of Resource Reposition

We start this paper with establishing two properties which are fundamental to the problem of resource
placements and repositions. The properties deal with how sensitive are optimal placements to changes in
the (stochastic) demand.

To establish these properties we use the following definitions:
Definition 1. We use the following definitions:

1. Let N1, N2 be two discrete non-negative distributions that are defined over the same support set
{0, 1, 2 . . .}.
(a) The L1-CDF distance is defined as the L1-distance between the CDF vectors of N1 and N2 i.e.,

d(N1, N2) =

∞∑
n=0

|Pr(N1 ≤ n)− Pr(N2 ≤ n)|. (11)

3Note that there might be multiple optimal placements.

6

(b) The distributions N1, N2 are said to be ε-near to each other if the L1-CDF distance between N1

and N2 is less than ε, i.e., d(N1, N2) < ε.

2. The demand sets D = {Dj
i }, D′ = {D′ji} are called strongly ε-near if the following conditions hold:

1) There is a region j0 and a resource type i0 such that the demand distributions Dj0
i0

and D′
j0
i0

are

ε-near to each other, i.e., d(Dj0
i0
, D′

j0
i0

) < ε. 2) For all (i, j) 6= (i0, j0) the demand distributions for type

i resources in region j in both demand sets are identical, i.e., Pr(Dj
i = n) = Pr(D′

j
i = n) for every n.

3. The revenue of the system (as opposed to profit), is defined according to Eqs. (5)-(8) from Section 2
as R(L,D) =

∑
iRiEDi [min(Di, Li)] +

∑
j

∑
iR

j
iEDji

[min(Dj
i , L

j
i)]. Given a demand D, an optimal

unconstrained revenue placement L is defined as the placement that maximizes R(L,D). Note
that the optimal revenue placement differs by definition from the optimal unconstrained placement
(defined earlier), which maximizes the profit i.e., the revenue R(L,D) minus the cost. The omission
of the cost function is done here for simplicity of presentation and is done only in this section.

3.1. Properties of L1-CDF distance

First we compare the ε-near distance to the well-known Klomogorov-Smirnov (KS) test[7]. We show that
strongly-ε near is tighter than the KS test, in the sense that if two distributions are strongly ε-near then
they are also obey the KS test.
Claim 3.1. Let N1 and N2 be two discrete distributions. If they are strongly-ε near then they obey the KS
test. .

Proof. The KS test for N1 and N2 is defined as KS = supn |Pr(N1 ≤ n)−Pr(N2 ≤ n)|. Thus, by definition
if N1 and N2 are ε–near than KS < ε.

Below we establish an interesting property of the L1-CDF distance that relates the CDF-distance to the
difference of expected values in some particular cases.
Claim 3.2. Let D1 and D2 be two discrete non-negative distributions. Then if D1 dominates over D2 then
d(D1, D2) = E(D1)− E(D2).

Remark 3. Formally, distribution D1 dominates D2 if Pr(D1 ≥ n) ≥ Pr(D2 ≥ n) for every value n ≥ 1.

Proof of Claim 3.2. In our proof we use the fact that the expectation of a non-negative positive distribution
equals to:

E(X) =

∞∑
k=1

Pr(X ≥ k) (12)

If D1 dominates D2 then

d(D1, D2) =

∞∑
n=0

|Pr(D1 ≤ n)− Pr(D2 ≤ n)| =︸︷︷︸
1−Pr(Di≤n)=Pr(Di≥n+1)

∞∑
n=1

|Pr(D1 ≥ n)− Pr(D2 ≥ n)| =

=︸︷︷︸
Definition of dominance

∞∑
n=1

Pr(D1 ≥ n)−
∞∑
n=1

Pr(D2 ≥ n) =︸︷︷︸
Eq. (12)

E(D1)− E(D2). (13)

The following claim states some particular cases where Claim 3.2 holds:
Claim 3.3. The following holds: 1) If D1 ∼ Poiss(λ1), D2 ∼ Poiss(λ2), where λ1 > λ2 then D1 dominates
D2. 2) If D1 ∼ Bin(n, p1), D2 ∼ Bin(n, p2), where p1 > p2 then D1 dominates D2.

7

Proof. A proof can be seen in [8].

3.2. Sensitivity of repositions to demand fluctuations

The first property, stated in Theorem 3.4, establishes that optimal unconstrained revenue placements can
be quite sensitive (in fact, infinitely sensitive) to changes in the demand. Thus, an algorithmic framework
that will insist on finding optimal placement in reaction to any demand change may result with infinitely
many resource repositioning and efforts.

Theorem 3.4 (Sensitivity in placement repositions). For every system with revenue constants Ri, R
j
i op-

timal unconstrained revenue placements are sensitive to the demand D. That means that for every ε > 0
there exist two demand sets D,D′ with optimal unconstrained revenue placements L = (Lji), L

′ = (L′
j
i) such

that: 1) D′, D are strongly ε-near. 2) The number of repositions used between L and L′ equals to the storage
constant s (See Section 2.2), which can be infinitely large.

Proof. We set demand D to the instance where no request is made, i.e., Pr(Dj
i = 0) = 1 for all resource

type i and area j. An optimal revenue placement for D is the zero placement Lji = 0 for all resource type i
and area j.

The demand D′ is defined as follows: 1) The probability that the demand of type-1 in area 1 is more than

n is ε
2n+2 (i.e., Pr(D′

1
1 ≥ n) = ε

2n+2). Therefore, the L1-CDF distance between D1
1 and D′

1
1 is

d(D′
1
1, D

1
1) =︸︷︷︸
Eq. (11)

∞∑
n=0

|Pr(D′
1
1 ≥ n)− Pr(D1

1 ≥ n)| = ε

2n+2
=︸︷︷︸

1
4 + 1

16 + 1
32 +...= 1

2

ε

2
< ε.

2) The number of requests for type i resources in area j, where (i, j) 6= (1, 1) is 0 (i.e., Pr(D′
j
i = 0) = 1). The

L1-CDF distance between Dj
i and D′

j
i is zero. Thus the first part of the theorem holds, i.e., the demands

D and D′ are strongly ε-near.

To prove the second part of the theorem we observe that an optimal revenue placement L′ for D′ should
contain as many as possible type-1 resources in region 1. Since the size of each placement is bounded by the
storage constant s, then L′ should contain s resources of type-1 in region 1. Thus, the number of repositions
used between the optimal revenue placement L and L′ equals to the storage constant s.

The theorem implies that, similarly to the revenue placements, optimal unconstrained profit placements
are sensitive to the demand distribution if the cost function C is small enough, in particular if it equals to
zero:
Corollary 3.5. For every system with revenue constants Ri, R

j
i there exists a cost function C() where

the optimal unconstrained profit placements (which maximize the profit) are sensitive to the demand D.
That means that for every ε > 0 there exist two demand sets D,D′ with optimal unconstrained placements
L = (Lji), L

′ = (L′
j
i) such that: 1) D′, D are strongly ε-near. 2) The number of repositions used between L

and L′ equals to the storage constant s (See Section 2.2), which can be infinitely large.

3.3. Sensitivity of the profit to demand distribution fluctuations

The second result establishes that the profit of the optimal unconstrained placement is not sensitive to
changes in the demand. So, while the placement can change radically (in reaction to small demand changes)
its profit will not. The change depends only on the linear combination between the change of the demand

8

and the revenue constants in Eqs. (6) and (7), regardless of the cost. We use the following definitions to
formulate the theorem:

Definition 2. Let D = {Dj
i }, D′ = {D′ji} be two demand sets.

1. The demand-distance between D and D′, denoted as d(D,D′) is

d(D,D′) =

m∑
i=1

k∑
j=1

d(Dj
i , D

′j
i)R

j
i +

m∑
i=1

d(Di, D
′
i)Ri, (14)

where Rji and Ri are the revenue constants in Eqs. (2) and (3).

2. Demands sets D and D′ are called weakly ε-near if the distance between them is less than ε, i.e.,
d(D,D′) < ε.

3. Placement L is called an ε-optimal placement with respect to demand D if the profit of L is not
less than the profit of an unconstrained (profit) optimal placement of D minus ε. That is P (L,D) ≥
maxL′ P (L′, D)− ε.

The second sensitivity theorem is presented next:

Theorem 3.6 (Sensitivity in placement profit). Let ε be the threshold parameter, and let D(t) and D(t+ 1)
be two demand sets of periods t, t+ 1. Suppose L(t) is an unconstrained optimal placement of D(t) (L(t) =
arg maxL P (L,D(t))). If D(t) and D(t + 1) are weakly ε-near, then L(t) is an ε-optimal placement with
respect to demand D(t+ 1).

Remark 4. Using simple inequalities on the profits of the optimal allocations on D(t) and on D(t + 1) it
is possible to provide a short proof that L(t) is an 3ε-optimal placement with respect to demand D(t+ 1).
Below we provide a proof of the theorem (for ε-optimal) that is based on a reduction to a graph flow problem.
The reduction and the results derived below will be needed later in Section 5.

Proof. The proof is quite involved and is supported by Claims 3.7, 3.8, 3.10 and Theorem 3.9 which
are presented (and proved) below, during the development of the proof. The proof uses a mapping of
the Unconstrained Reposition Problem to the min-cost flow problem over a 4-layer multigraph (graph with
parallel edges between vertices) G4 (see Figure 3) composed of a source x, region nodes j1, j2, . . . jk, resource
type nodes i1, i2 . . . im and a sink y. Between every two nodes of successive layers in G4 are s edges, where s
is the storage constant (See Section 2.2), which is a large as needed constant. In every edge we can transfer
a single unit of flow or not transfer flow at all, namely, the edge capacity is 1. In this multigraph every
placement L is represented by a certain flow fL, so that the quantities of a placement (L = (Lji)) are the
flow values between region nodes j and resource type nodes i, i.e., the number of edges with a single unit
of flow from j to i. Similarly the flow between x and an area node j represents the number of resources
allocated in area j, and the flow between resource type node i and sink y represents the number of resources
allocated of resource type i. In addition, the graph contains s edges from x to y, where the flow on these
edges represent resources (out of s) that are not utilized. The full details of the reduction are given in the
appendix (Appendix B).

Example 3.1. Consider a system with two regions denoted by a, b and two resource types denoted by α, β.
Suppose that the number of resources in a of respectively resource types α, β are Laα = Laβ = 1, while the

number of resources in b are Lbα = 0, Lbβ = 1. The flow of the associated placement fL is presented in
Figure 3, where the red edges are edges with a single unit of flow, and the blue edges are with 0 unit of flow.
Between every two nodes if there are n red edges, then there are s− n blue edges. In the diagram the total
flow is s = 4 (for example, there are three blue edges between x and y and one red edges).

9

y

Area nodes Type nodes

x

-0.3

-0.5

-0.2

-0.4

-0.35

-0.4

0

0

0
0

-0.3

-0.2

-0.5

Figure 3: The flow fL in the multigraph G4 where Laα = Laβ = 1 and Lbα = 0, Lbβ = 1 (Example 3.1). Red edges are edges with

a single unit of flow, and blue edges with 0 unit of flow. Between every two nodes there are totally s(= 4) edges. We omit
some blue edges from the graph for the sake of presentation.

In the min-cost flow problem one places weights on the edges and defines the flow weight (or flow cost) as
the sum of costs on the edges with non-zero flow. For example the flow weight of the graph in Figure 3 is
−3.45. Then one considers all flows whose flow value (or required flow), which is the total flow from source
node x to its neighbors, is fixed (say s) and seeks over all these flows the one that minimizes the flow weight.

We construct the mapping by defining the weights w(e), such that, roughly speaking, the weight of the ith

edge between a region node (say a) and a type node (say β) represents the effect of adding the nth resource
of type β in region a to the corresponding marginal profit function ζaβ . This equals to the profit differential
−∆ζaβ(n,D) = −(1) · (ζaβ(n,D)− ζaβ(n− 1, D)). The edge weights are multiplied by minus one as we convert
a maximum profit placement problem into a minimal cost flow problem. Similarly edges from the source
node x to an area node a are assigned weights corresponding to adding a resource in region a, and edges
from a resource type node β to the sink node y are assigned weights corresponding to adding a resource of
type β. Edges between the source x and the sink y, have zero weight. They serve to preserve the flow value
constant without providing any benefit to pass flow in them. Note that the graph edge weights depend on
the demand D.

The following claim establishes how the profit of a placement relates to the cost of its corresponding flow:

Claim 3.7. Let L be a placement. Then its profit equals to a constant c minus the weight of its corresponding
flow fL i.e.,

P (D,L) = c−W (fL, w(D)), (15)

where c depends neither on the placement L nor the demand D, and W (f, w(D)) is the flow weight of the
flow f using the edge weights w resulting from the demand D.

Proof. A detailed rigorous proof can be found in Appendix C. It is based in the fact that the sum of

10

differential weights

(−1) ·∆ζ(0, D) = ζ(0, D)− ζ(1, D),

(−1) ·∆ζ(1, D) = ζ(1, D)− ζ(2, D),

...

(−1) ·∆ζ(Lji − 1, D) = ζ(Lji − 1, D)− ζ(Lji , D),

forms a telescoping series. We denote W (v1, v2, fL) the total flow weight of fL between v1 to v2. So for
example, if a is a region node and β is a resource type node we show that W (a, β, fL) is a sum of terms in the

above equations (i.e. W (a, β, fL) =
∑Laβ−1

n=0 (−1) ·∆ζaβ(n,D)), and therefore, breaking ζ to its components
we get:

ζa(La) = ζa(0)−W (x, a, fL), (16)

ζaβ(Laβ , D) = ζaβ(0, D)−W (a, β, fL), (17)

ζβ(Lβ , D) = ζβ(0, D)−W (β, y, fL). (18)

If we sum these equations for every resource type and every region, we will get the desired result. Note that
according to Eq. (6)-(8) in Section 2, ζa(0), ζaβ(0, D), ζβ(0, D) neither depend on the demand D, nor on the
placement L. Thus the constant c, which is the sum of these terms, neither depend on the demand D, nor
on the placement L.

Having established how the profit relates to the corresponding flow we next observe that if one aims at
finding the minimal weighted flow (among all flows of the same flow value) one would pick in the graph the
edges whose weights are the smallest - that is those resources which profit the placement the most. Note that
the weight of the direct edge from x to y is zero - leaving no incentive to direct the flow through that edge.
Thus the solution of the unconstrained optimal placement Lopt is corresponding to the flow fmin which is of
minimal weight (i.e., the flow that minimizes the sum of red edges weights), as seen in the following claim:

Claim 3.8. There exists a placement L whose corresponding flow fL is the min-cost flow of G4 with edge
weights w(D) corresponding to demand D and with required flow |f | = s. Moreover, L is the optimal
unconstrained placement for demand D.

Proof. The correctness of the claim stems from the following three facts: 1) the marginal profit functions ζ are
concave functions (See Section 2.3). I.e., ∆ζ are monotonically non-increasing functions (where ∆ζ(n,D) =
ζ(n+ 1)− ζ(n)). 2) if the capacities of a min-cost flow network are integers, then its min-cost flow f has an
integer value flow. The latter is a well-known theorem [a proof can be seen in [9], Theorem 9.10 (Integrality
Property)]. 3) By Claim 3.7. The detailed proof is given in Appendix D.

To continue proving Theorem 3.6, we next observe the min-cost flows fopt(t) and fopt(t+1) which respectively
are corresponding to the unconstrained optimal placements in periods t, t + 1 i.e., L(t) and L(t + 1). Let
w(t) and w(t + 1) denote respectively the graph weights of demands D(t), D(t + 1) in G4. According to
Eq. (15) the change in the flow weight between fopt(t) and fopt(t+ 1) with respect to weight w(t+ 1) equals
to the profit deviation between placements L(t+ 1) and L(t) with respect to demand D(t+ 1), i.e.,

P (L(t+ 1), D(t+ 1))− P (L(t), D(t+ 1)) = W (fopt(t), w(t+ 1))−W (fopt(t+ 1), w(t+ 1)).

11

Thus, if we prove that the flow weight difference W (fopt(t), w(t + 1)) −W (fopt(t + 1), w(t + 1)) is smaller
than the demand distance d(D(t), D(t + 1)), which is assumed to be smaller than ε, then we can conclude
that P (L(t), D(t+1)) > P (L(t+1), D(t+1))−ε, i.e., L(t) is an ε-optimal placement with respect to demand
D(t+ 1), as required. Therefore, to prove Theorem 3.6 we only need to show the following equation:

W (fopt(t), w(t+ 1))−W (fopt(t+ 1), w(t+ 1)) ≤ d(D(t), D(t+ 1)). (19)

To bound the difference W (fopt(t), w(t+ 1))−W (fopt(t+ 1), w(t+ 1)) we use the following graph-theoretic
result proven in [10]:

Theorem 3.9. Let G = (V,E) be a multigraph with unit capacities defined over G edges (c(e) = 1). Let
w and w′ be the sets of edge weights defined over G, and let fmin and f ′min be respectively their integer
min-cost flows of the same flow value (|fmin| = |f ′min|)4. Then the flow weight of fmin with respect to the
new weight w′ is bounded by the flow weight of f ′min respect to w′, plus the sum over all edges in G of the
edge-weight deviations |w′(e)− w(e)|. That means

W (fmin, w
′)−W (f ′min, w

′) ≤
∑
e∈E
|w′(e)− w′(e)|. (20)

Proof. In [10].

Now, given that w = w(t) and w′ = w(t + 1) are respectively the edge weights of G4 corresponding to
demands D(t), D(t+ 1), we can bound the distance |w′(e)− w(e)| for every edge e.

Claim 3.10. Let w = w(t) and w′ = w(t + 1) be the edge weights of G4 with respect to demands D(t)
and D(t+ 1) respectively. Then the difference of weights |w(e)− w′(e)| is bounded by the demand distance
d(D(t), D(t+ 1)), i.e., ∑

e∈E
|w′(e)− w′(e)| ≤ d(D(t), D(t+ 1)). (21)

Proof of Claim 3.10. Below we provide the main arguments of the proof. The full detailed proof is given in
Appendix E.

We first express the edge weights w(e) by the model parameters. To compute the differential of the marginal
functions ζji , ζi, we use the following formula to compute the partial expectation (i.e., EX(min(n,X))) of a
discrete non-negative distribution by its CDF values Pr(X ≥ n):

EX(min(n,X)) =

n∑
k=1

Pr(X ≥ k) =

n−1∑
k=0

(1− Pr(X ≤ k)). (22)

The formula was Proven in [11] Claim 6.4. The exact expression of the edge weights w(e), expressed by the
demand CDF, and utilizing Eq. (22), can be found in Appendix E.

4As stated above the min-cost flow can be derived with respect to any flow value s. Thus we can set the flow values of both
min-cost problems to be equal to the same s, that is |fmin| = |f ′min| = s.

12

Second, given a region node (say a) and a type node (say β) we show that we can bound the sum of weight
differences over all edges by ∑

e connects a to β

|w(e)− w′(e)| ≤ d(Da
β(t), Da

β(t+ 1))Raβ , (23)

∑
e connects β to y

|w(e)− w′(e)| ≤ d(Dβ(t), Dβ(t+ 1))Rβ , (24)

∑
e connects x to a

|w(e)− w′(e)| =
∑

e connects x to y

|w(e)− w′(e)| = 0. (25)

These inequalities holds since as the L1-CDF distance between two distributions d(N1, N2) is by definition
the sum of the absolute value differences between N1 and N2 CDF values. Note that the weights between
the sink x and region nodes a are not affected by the demand and therefore w(e) = w′(e) for every edge
between x and a.

Therefore we conclude that

∑
e∈E
|w(e)− w′(e)| =≤

m∑
i=1

k∑
j=1

d(Dj
i (t), D

j
i (t+ 1))Rji︸ ︷︷ ︸

Eq. (23)

+

m∑
i=1

d(Di(t), Di(t+ 1))Ri︸ ︷︷ ︸
Eq. (24)

= d(D(t), D(t+ 1)). (26)

as required.

Finally, from Claim 3.10 and Theorem 3.9 we imply Eq. (19) and consequently Theorem 3.6 is proven.

From Theorem 3.6 the following is implied:
Corollary 3.11. For any parameter setting, for any ε > 0 and for every demand distribution D with an
optimal placement L there exists demand distribution D′ 6= D such that L is an ε-optimal placement with
respect to demand D′.

Proof. One can create D′ from D by adding to the pdf of D an ε/2 mass at some position k and subtracting
it at position k + 1. Following Theorem 3.6 the corollary holds.

successive

4. Hardness of the Constrained Reposition problem

In this section we prove the hardness of the Constrained Reposition Problem; specifically, we show that if
there is an optimal polynomial solution for the Constrained Reposition Problem - then there is a polynomial
solution to the Exact Perfect Matching Problem 5. The question whether the Exact Perfect Matching
problem has a polynomial time solution is considered to be an old open problem in graph theory for almost
30 years ([12], [13] [14]). One may therefore conjecture that the Constrained Reposition problem is a hard

5Given a graph where edges are colored in red or blue and a parameter k, the Exact Perfect Matching Problem asks for a
perfect matching that has exactly k red edges; a perfect matching is a set of edges covering all vertices such that no two edges
share a vertex.

13

problem. We show that the hardness of conjecture regarding the Constrained Reposition problem remains
true even if the marginal profit functions ζji (defined in Eqs. (6)-(8)) are linear functions with limitations
(See Remark 5 in the sequel).

For the sake of proving the hardness we define the Fair Christmas Game Problem, and show a polynomial
reduction from the Fair Christmas Game Problem to the Constrained Reposition Problem. Then, in Ap-
pendix F we show that there is a polynomial reduction from the Exact Cycle Sum Problem to the Fair
Christmas Game Problem. The Exact Cycle Sum Problem was proven to be polynomially equivalent to the
Exact Perfect Matching Problem (i.e., there is a polynomial solution to one problem iff there is a polynomial
solution to the other problem).

4.1. The Fair Christmas Game Problem and its reduction to the Constrained Reposition Problem

The Fair Christmas Game Problem is formulated for the sake of proving that the Constrained Reposition
Problem is hard. In a Christmas Game there are n players where each of them has n Christmas gifts which
they can send to their friends. In a fair game every player that receives x gifts must send x gifts. We assume
a player can give to a friend only a single gift, and she can give gifts only to players that she defines as her
friends. We denote Si to be the set of player-i’s friends, and define Ŝ = {S1, S2, . . . , Sn} to be the friend
list of all players.

The Fair Christmas Game Problem is formulated as follows:

Fair Christmas Game Problem
Input: A parameter k, the number of players n, the friend list Ŝ = {S1, S2, . . . , Sn} of the players.

Problem: Is there a fair game in which a total number of k gifts are delivered between players?

We first show that the Fair Christmas Game Problem can be reduced to the Constrained Reposition Problem
by showing that every instance of the former can be formulated as an instance of the latter, and thus conclude
that the Constrained Reposition Problem is hard at least as the Fair Christmas Game Problem:

Theorem 4.1. There is a polynomial reduction from the Fair Christmas Game Problem to the Constrained
Reposition Problem.

Proof. We construct the reduction by creating an instance of the Constrained Reposition Problem consisting
of n regions (region j represents player j), and n resource types (resource type i represents the gifts originated
by player i, called type-i gifts). Under this construction a placement L = (Lji) represents the number of

type i gifts possessed by player j. We consider the placement of period t, L(t) = (Lji (t)), to represent the

state of the gifts prior to giving them; that is Lii(t) = n (player i possesses n copies of gift i) and Lji (t) = 0
for i 6= j (no one was given a gift yet). The placement L(t+1) resulting from the reposition is corresponding
to the states of the gifts after they are given. This means that if Lji (t+ 1) = 1 for i 6= j then player i sends
to player j a gift.

Given the friend-list Ŝ = {S1, S2, . . . , Sn} of a Fair Christmas Game instance, a placement of gifts L is called
Ŝ-valid if for every i 6= j, the number of type i gifts player j possesses is either 0 or 1 (i.e., Lji ∈ {0, 1}) and

in case player j possesses a single gift from player i, then j is a friend of i according to Ŝ (i.e., if Lji = 1
then j ∈ S(i)). We say that a placement is balanced if every player possesses exactly n gifts (Lj = n for
every player j) and if every gift type appears exactly n times in the placement (Li = n for every gift type
i). It is obvious that the initial placement L(t) is balanced and Ŝ-valid for every Ŝ. If a placement is not
Ŝ-valid or it is not balanced it is called respectively an Ŝ-invalid placement or an imbalanced placement.

We construct the marginal profit functions ζi, ζ
j and ζji such that balanced and Ŝ-valid placements will

be more profitable than imbalanced placements and Ŝ-invalid placements; such construction will force the

14

solution of the optimal constrained-reposition problem to be balanced and Ŝ-valid. The functions are selected
as follows:

ζi(x,Di) = ζj(x) =

{
x · (n2 + 1) if x ≤ n.

−∞ otherwise.
(27)

ζji (Lji , D
j
i) =


0 if i = j or Lji = 0.

1 if i 6= j, j ∈ S(i) and Lji = 1.

−∞ otherwise.

(28)

It is easy to see that under these functions the following holds:

1. The functions are concave and are legitimate for using in the constrained-reposition problem (where
we set the revenue constants in Eqs (6), (7) to be zero, i.e., Ri = Rji = 0).

2. The profit of L(t) according to Eq. (5) is P (L,D) = 2n2(n2 + 1).
3. For every i, j we have ζji (Lji , D

j
i) ≤ 1. Thus, the sum of ζji is bounded from above by n2.

4. The profit of an Ŝ-invalid placement is −∞ according to Eq. (28).
5. The profit of an imbalanced placement must be < 2n2(n2 + 1) since the sum of ζi and ζj is ≤

2n2(n2 + 1)− (n2 + 1) and the sum of ζji is ≤ n2.

6. The profit of any placement which is Ŝ-valid and balanced is ≥ 2n2(n2 + 1) (the term 2n2(n2 + 1)
results from Eq. (27), and Eq. (28) cannot decrease the profit).

7. Thus, placements which are Ŝ-valid and balanced are more profitable than imbalanced placements or
Ŝ-invalid placements. This implies that the optimal solution must be balanced and Ŝ-valid.

The structure of L(t) and the fact that the optimal constrained placement for period t+ 1, L(t+ 1), must
be balanced and Ŝ-valid imply that L(t+ 1) must obey:

1. In the transformation from L(t) to L(t + 1) no gifts are created or lost (thus they are only moved
between players).

2. The total number of gifts possessed by each player is kept constant (equals to n). So the number of
gifts player i gives is identical to the number of gifts player i received.

3. For i 6= j, the number of type i gifts player j possesses is either 0 or 1. In case this number equals to
1 then j ∈ S(i) i.e., player i can send a gift to player j in a Fair Christmas Game with the friend-list
Ŝ. Thus,

∑
i

∑
j ζ

j
i (L(t + 1)ji , D

j
i) equals to the number of gifts delivered between players in a Fair

Christmas Game with friend-list Ŝ.
4. The profit of a balanced and Ŝ-valid placement is 2n2(n2 + 1) +

∑
i

∑
j ζ

j
i (L(t+ 1)ji , D

j
i).

These properties imply the following claims:

Claim 4.2. If L(t + 1) is the optimal placement of period t + 1 - then the transformation from L(t) to
L(t+ 1) must represent a Fair Christmas game. Moreover, if the profit of L(t+ 1) is 2n2(n2 + 1) + k - then
the number of gifts delivered between players in the respected Fair Christmas game is k.

Claim 4.3. Given a friend list Ŝ, any fair game corresponding to Ŝ where k gifts delivered between players
can be modeled by a placement L(t+ 1) with profit of 2n2(n2 + 1) + k.

These claims show that the solution to the Fair Christmas Game can be found by finding the optimal
reposition. As required.

Remark 5. The marginal profit ζi, ζ
j , ζji (Eqs. 27, 28) are all linear function with limitations over the

number of type i resources, the number of area j resources, and type i area j resources.

15

4.2. Hardness of the Constrained Reposition Problem

The following theorem, proved in Appendix F, establishes the hardness of the Fair Christmas Problem. This
is done by first showing that the Fair Christmas Game Problem is as hard as the Exact Cycle Sum problem,
a problem that was introduced in [12].

Theorem 4.4. There is a polynomial reduction from the Cycle Sum Problem to the Fair Christmas Game
Problem.

Then we quote a result of Papadimitriou et al.[12] showed that the Exact Cycle Sum Problem is hard at
least as the Exact Matching Problem:

Theorem 4.5 ([12]). There is a polynomial reduction from the Exact Matching Problem to the Cycle Sum
Problem.

Theorems 4.4, 4.5 imply that a polynomial solution for Fair Christmas Game Problem implies a polyno-
mial solution for the Exact Matching Problem6. Combining it with Theorem 4.1 implies the hardness of
Constrained Reposition Problem as follows:
Corollary 4.6. The Constrained Reposition Problem is hard as the Exact Matching Problem. I.e., if there
is a polynomial solution to the Constrained Reposition Problem - then there is a polynomial solution to the
Exact Matching Problem.

Finally, to imply the hardness of the Constrained Reposition Problem we observe that solving polynomially
the Exact Matching Problem is a studied and a well-known problem which is open for almost 30-years
([12], [14], [13]), and graph theory experts have not yet solved it. Providing a polynomial solution to the
Constrained Reposition Problem might be infeasible, and would imply a polynomial algorithm to solve the
Exact Matching Problem.

5. The Shortest Cycle Operation (SCO) algorithm

As there is no polynomial time solution for the Constrained Reposition Problem (as shown in Section 4)
we present a polynomial time heuristic algorithm called SCO that solves the problem. We prove that SCO
finds an optimal solution in the following cases: 1) If the reposition constraint r is very large; in particular
SCO can find the unconstrained optimal placement (r =∞). 2) If the reposition constraint r is very small.
3) In a single region system or a single type system.

5.1. Description of SCO

To describe SCO we use the following definitions:
Definition 3. An operation o is a composition of unit operations (i.e., addition or subtraction operations).
The length m of an operation o is the number of repositions the operation do.

For example, suppose o is the operation that adds two resources of type 1 to region 1, and substrates one
resource of type 2 in region 1. If L is a placement such that L1

1 = 2 and L1
2 = 2 then the placement

L′ = o(L) has four resources of type 1 in region 1, and one resource of type 2 in region 1 (L′
1
1 = 4 and

L′
1
1 = 1). The operation o repositions three resources and thus its length is m = 3. Note that an operation

that is a composition of m unit operations can be of length smaller than m, if the operations cancel each
other.

6It can be shown that the problems are equivalent, but for the sake of this work this is not required.

16

Definition 4. Given the demand D the profitability of an operation o over placement L, denoted by
∆(o, L), is the marginal profit of using o over L, i.e., ∆(o, L) = P (o(L), D)− P (L,D). The operation o is
called profitable over L if ∆(o, L) > 0.

For example, suppose the demand D1
1 is deterministic equaling to 5 and the profit function is P (L,D) =

5 ·min(L1
1, 5)− 4 ·L1

1. Then, the profitability of removing a single type 1 resource from region 1 is ∆(o, L) =
[5 ·min(L1

1 − 1, 5)− 4 · (L1
1 − 1)]− 5 ·min(L1

1, 5) + 4 · L1
1 which equals 4 if L1

1 ≥ 6 and −1 if 1 ≤ L1
1 ≤ 6. Of

course, the operation is profitable if L1
1 ≥ 6.

Definition 5. Given a placement L a shortest profitable operation of L is a profitable operation o of
length m such that: 1) The length of every profitable operation o′ is not less than m. 2) If o′ is an operation
of length m, then o is more profitable than o′, i.e., ∆(o, L) ≥ ∆(o′, L).

Note that every two shortest profitable operations of the same placement L have the same profitability and
the same length. Also, unless L is an optimal unconstrained solution, there exists at least one profitable
operation, and thus a shortest profitable operation exists.

To this end the SCO algorithm finds given an initial placement L(t) at period t the optimal placement
with respect to a new demand D(t+ 1) that can be achieved under a reposition constraint, as described as
follows:

SCO algorithm: 1) We set initially set A(0) ← L(t). 2) In every iteration i we find the shortest prof-
itable operation oi for placement A(i) and set A(i + 1) ← oi(A(i)). We terminate if A(i) is the optimal
unconstrained solution of D(t + 1), or if the reposition constraint will be violated. In the next subsections
we present an implementation of the SCO algorithm in a polynomial time. Below we describe a running
example of SCO regardless of its implementation.

Consider a system with two regions and a single resource type. The demand distributions D1
1 and D2

1 are
deterministic equal respectively to 5 and 3. The profit function is P (L,D) = min(L1

1, 5) + min(L2
1, 3) +m1 ·

min(L1, 8)−m2 · L1
1, where m1 >> m2 >> 1 are constants. The initial placement is set to be A(0) = L(t),

where L1
1(t) = 6, L2

1(t) = 1 and the reposition constant is r = ∞, i.e., the reposition constraint cannot be
violated. One can check that the optimal unconstrained placement is (L1

1 = 5, L2
1 = 3). The profitability of

adding a single resource to A(0) in regions 1 and 2 equals respectively to m1−m2 > 0 and 1 +m1−m2 > 0.
The profitability of removing a single resource from A(0) in regions 1 and 2 is respectively m2 −m1 < 0
and m2 −m1 − 1 < 0. Thus, the shortest profitable operation adds a single resource to region 2, and SCO
sets A(1) = (6, 2). SCO will continue to the next iteration as the reposition constraint is not violated and
A(1) = (6, 2) is not the optimal unconstrained solution.

An addition or a subtraction operation over A(1) is not profitable: adding a resource has a profitability
c−m2 < 0 where c is a constant, while removing a resource has a profitability of m2 −m1 + c < 0. Thus,
there is no profitable unit operation (i.e., a profitable operation of length 1).

The SCO thus finds a shortest profitable operation of length m ≥ 2. One might check that SCO in the
second iteration adds to region 2 and removes from region 1. SCO will terminate after two iterations, as
A(2) = (5, 3) is the optimal unconstrained solution.

Remark 6. If the reposition constant in the above running example was r = 1 or r = 2, then SCO
terminates after the first iteration due to the reposition constraint violation and returns the placement
A(1) = (6, 2). For a reposition constant larger than 3 SCO returns A(2)− (5, 3)

5.2. Key properties of the SCO algorithm

Next, we establish the key properties of SCO presented in the following theorems:

Theorem 5.1 (Optimality of SCO in single region or single type). In systems with a single region or with
a single resource type SCO will return an optimal solution for the Constrained Reposition Problem.

17

Proof. For a single type system, [15] showed that a greedy algorithm that first conducts a sequence of length
m = 1 (as long as they are profitable) followed by a sequence of operations of length m = 2 (as long as they
are profitable) yields the optimal solution of the Constrained Reposition Problem. It is easy to see that
SCO follows that algorithm and therefore yields the optimal result. Similarly for a single type system.

Theorem 5.2 (Optimality of SCO for small reposition constants). For every system there is a constant r1

such that for every reposition constant r ≤ r1 SCO finds an optimal solution for the Constrained Reposition
Problem. In particular, it can find the optimal unconstrained solution for a large enough r.

Proof. Suppose the shortest profitable operation of L(t) is of length m. Then for every r ≤ m − 1 there is
no profitable operation of length r that can improve the profit of L(t). To this end, we set r1 = m− 1, and
for every r < r1 SCO finds an optimal solution for the Constrained Reposition Problem7.

Theorem 5.3 (Optimality of SCO for large reposition constants). For every system where an optimal
solution for the Unconstrained Placement Problem exists there is a constant r2 such that for every reposition
constant r ≥ r2 SCO finds an optimal unconstrained solution. In particular, for r ≥ r2, SCO solves the
Constrained Reposition Problem.

Proof. Let D = D(t+ 1) be the new demand in period t+ 1 and L(t) the placement in period t. To prove
that there is such r2 we order all possible placements by their profit (according to demand D). That means,
P (L1, D) ≥ P (L2, D) ≥ P (L3, D) . . . where L1 is the optimal unconstrained solution. For every placement L
we define its rank rank(L) as the index of L in the order (if rank(L) = 1 then L is the optimal unconstrained
placement).

We note that the following properties hold:

• Placements with higher profits have smaller ranks. That means, given two placements L and L′ such
that L′ has a higher profit than L (i.e., P (L′, D) > P (L,D)) then the rank of L′ is smaller than that
of L′ (i.e., rank(L′) ≤ rank(L)− 1).

• SCO improves the profit of the previous placement i.e., the profit of the placement computed in the
ith iteration is larger than the profit of the placement computed in the i− 1th iteration. That means,
P (A(i− 1), D) < P (A(i), D).

We imply from both properties that the rank of the placement A(i) is rank(A(i)) ≤ rank(A(i − 1)) − 1 ≤
. . . ≤ rank(A(0))− i = rank(L(t))− i. Thus, regardless of the reposition constant r, SCO must terminate
after at most q = rank(L(t)) iterations, otherwise 1 ≤ rank(A(q)) ≤ rank(L(t))− q = 0 - a contradiction.

Suppose we run SCO over r = ∞, and after qmin < q iterations SCO finds the optimal unconstrained
solution and terminates. We define r2 to be a big enough reposition constant that enables SCO to run qmin
iterations without violating the reposition constraint. We set

r2 = max
1≤i≤qmin

m∑
i=1

k∑
j=1

|Aji (i)− L
j
i (t)|+ 1.

Then, the placement SCO finds in the ith iteration Aji (i) cannot violate the reposition constraint for every
1 ≤ i ≤ qmin. Thus SCO will not terminate until it finds the optimal unconstrained solution after qmin
iterations.

7It can be shown that for r1 = m SCO finds an optimal solution for the Constrained Reposition Problem.

18

5.3. Implementation of the SCO algorithm - outline

Finding the shortest profitable operation is not trivial. The number of available operations equals to the
number of placements that are bounded by a large storage number s, and therefore the number of possibilities
that must be examined can be very large (exponential by s); checking if there is a profitable operation may
not be simple to implement, let alone in polynomial time. In the next subsection we propose a polynomial
time algorithm that does address this problem, namely that given a placement L over demand D it finds its
shortest profitable operation.

Our strategy is as follows: First (Section 5.4) we narrow down the space of shortest profitable operations to
operations of very specific characteristics, called extended chains that, roughly speaking, can be described
as a sequence of move operations between regions (rather than an arbitrary sequence of add and subtract
operations). We show that only these operations are candidates to be the shortest profitable operation and
this is the key for our algorithm. Second (Section 5.5) we analyze the profit of these extended chains and,
roughly speaking, show that the profit consists of the sum of marginal profits of each of the move operations.
Lastly (Section 5.6) we use this information to construct a graph (see Fig. 4), whose nodes represent the
regions and an edge between node i and j represents the move operation from node i to j where the edge
cost is the profit of the corresponding move. This implies that an extended chain is a path on this graph
and the profit of this extended chain is the length of the corresponding path. This allows us to find the
shortest profitable operations by finding shortest paths in a graph; This approach allows us to capitalize on
the knowledge in the graph theory field and the efficient algorithms designed in that domain.

5.4. Shortest profitable operation is an extended chain operation

We characterize that every shortest profitable operation must be an extended chain operation. We then show
that a profitable shortest cyclic operation can be found in polynomial time.
Definition 6 (Extended chain operation). A move operation of format O(j1 → j2) is an operation that
moves a resource from region j1 to j2

8. A chain operation of format O(j1 → j2 → . . . → jn) is a
concatenation of zero or more move operations, i.e., it moves a resource from jk to jk+1 (k = 1, 2 . . . n− 1).
A chain operation O(j1 → j2 → . . .→ jn) where resource of type ik is moved between jk and jk+1 is called
simple if jk1 6= jk2 and ik1 6= ik2 for every k1 6= k2. An extended chain E(j1 → j2 → . . . → jn) is a
simple chain operation O(j1 → j2 → . . .→ jn) that in addition, can possibly conduct either (non exclusive)
one of the following two unit operations: 1) add a resource to region j1, 2) remove a resource from region
jn.

For example, suppose there are two resource types 1, 2 and two region a, b. Let L = (La1 = 1, La2 = 2, Lb1 =
3, Lb2 = 4). A move operation O(a → b) can either move a resource of type 1 or a resource of type 2.
Applying the former move operation over L will result in placement L = (0, 2, 4, 4) and the later move
operation will result in placement L = (1, 1, 3, 5). An extended chain operation E(a → b) can, in addition,
add a resource to region a (of types 1, 2), remove a resource from region b, do both of these or neither of them.
Applying an extended chain operation over L can yield results such as L = (0, 2, 4, 4), (1, 2, 4, 4), (0, 3, 4, 4)
and others.

Remark 7. 1) In the particular case where the chain length is zero the extended chain operation E(j1) is
simply a subset of the operation set consisting of a resource subtract at j1 and resource add at j1. That
means, a resource of type i1 is replaced by a resource of type i2 at j1. 2) The number of repositions an
extended chain operation E(j1 → j2 → . . .→ jn) can do is either 2(n− 1) (if the operation does not adds a
resource to j1 nor removes from jn), 2(n− 1) + 1 (the operation adds a resource to j1 or removes a resource
from jn, but not both), or 2(n − 1) + 2 (the operation adds a resource to j1 and removes a resource from
jn).

8This move is identical to an addition of some type i resource in region j2 and a subtraction of a type i resource from region
j1.

19

Our fundamental theorem shows that the search for a shortest profitable operation can be narrow only to
extended chains operations.
Theorem 5.4 (Shortest profitable operation are extended chain operations). For every placement L its
shortest profitable operation must be an extended chain.

Note that the optimal unconstrained placement Luncon is trivially excluded from Theorem 5.4, as there is
no profitable operation for Luncon.

The proof of this theorem (based on mapping to a flow graph problem as in Figure 3) is postponed to
Section 5.7, and we now focus on the algorithmic side of SCO. The proof is involved and detailed, and uses
a transformation to a flow problem explained in the end of Section 3, based on the concavity assumption
of the marginal profit functions (Section 2.3). The proof is a long theoretical result heavily based on min-
cost arguments in graph theory. As many of our readers are interested more on the algorithmic side of
SCO algorithm and less of graph theory results, we will present the correctness of the theorem later in
Section 5.7.

Based on Theorem 5.4, we devise an algorithm that given a placement L it finds a shortest profitable
operation in O(k2(k2 + m)) steps (k is the number of regions, m is the number of resource types) by
exploring the set of extended chains. The algorithm uses the structure of extended chains, which allows
the computation of the shortest profitable operation to be equivalent to finding the shortest path in graph.
In order to compute the edge weights in the graph, we study in the next subsection the structure of the
profitability of the extended chain operations as computed by the algorithm.

5.5. Profitability structure of an extended chains

To express the profitability structure we recall that the profit function P (D,L) is composed of the sum of
marginal functions ζi(Di, Li), ζ

j
i (Dj

i , L
j
i), ζ

j(Lj) (Eq. (5)). We denote gi(n) = ζi(n,D
j
i), g

j(n) = ζj(n,Dj
i)

and gj(n) = ζj(n), so that

P (L,D) =

m∑
i=1

k∑
j=1

gji (L
j
i)︸ ︷︷ ︸

area & type

+

m∑
i=1

gi(Li)︸ ︷︷ ︸
type

+

k∑
j=1

gj(Lj)︸ ︷︷ ︸
area

, (29)

and denote the differential of a discrete function g as ∆g(n) = g(n+ 1)− g(n). In the next lemma we will
use the differential of area & type functions ∆gji and the differential of area functions ∆gj .

The set of extended chains can be partitioned into five classes such that the profitability structure of each
class is expressed slightly differently. One such class is the set of operations O(j1 → j2 . . . → jn) (that
neither add resource to j1 nor removes from jn). For sake of presentation brevity, we show next the
profitability structure for this class of operations. In Appendix G, we show the profitability structure for all
five classes.
Lemma 5.5. Let o be an extended chain operation O(j1 → j2 → . . .→ jn) that neither adds a resource to
j1 nor removes from jn. Suppose that between jk to jk+1 it moves a resource of type ik (k = 1, 2 . . . n− 1).
Then the profitability of o over L is

∆(o, L) = ∆+(j1) +

n−1∑
k=1

∆ik(jk → jk+1) + ∆−(jn). (30)

where,

20

∆i(j1 → j2) = ∆gj2i (Lj2i)−∆gj1i (Lj1i − 1) (31)

∆+(j) = −∆gj(Lj − 1) (32)

∆−(j) = ∆gj(Lj). (33)

Intuitively, ∆i(j1 → j2) represents the change in the area & type part of Eq. (29) affected by the moving
a type i resource from j1 to j2. The terms ∆+(j),∆−(j) represent the change in the area part of Eq. (29)
affected by respectively removing and adding a resource to area j.

Proof. By the definition of profitability and Eq. (29), the profitability of o over L (denoted by o(L)) equals
to the sum of three terms: 1) sum of area & type marginal function differentials gji (o(L)ji)− g

j
i (L

j
i) (where

o(L)ji denotes the number of resources o(L) contains of type i in region j) over all regions j and resource
types i. 2) Sum of type marginal function differentials gi(o(L)i)− gi(Li) for all resource types i and 3) sum
of area marginal function differentials gj(o(L)j)− gj(Lj) all regions j.

First, we consider the effect of a move operation over the area & type function term (sum of gji (o(L)ji) −
gji (L

j
i)): Suppose that o moves a resource of type i from region j1 to region j2. Then o adds a resource

of type i to region j2, and removes a resource of type i from region j1. Therefore, o(L)j2i = Lj2i + 1 and

o(L)j1i = Lj1i − 1. For j = j2, the term gji (o(L)ji) − gji (L
j
i) equals to gji (L

j
i + 1) − gji (L

j
i) = ∆gji (L

j
i).

For j = j1, the term gji (o(L)ji) − g
j
i (L

j
i) equals to gji (L

j
i − 1) − gji (L

j
i) = −∆gji (L

j
i − 1). Thus the move

operation contributes to the area & type terms ∆gj2i (Lj2i) −∆gj1i (Lj1i − 1) = ∆i(j1 → j2). Since for every
k = 1, 2 . . . , n− 1 the operation o moves a resource of type ik from jk to region jk+1, then o contributes to
the area & type terms

∑n
k=1 ∆ik(jk → jk+1). For (i, j) 6= (ik, jk) and (i, j) 6= (ik, jk+1) the number of type

i resources in region j do not change, and gji (o(L)ji)− g
j
i (L

j
i) = 0.

Next consider the area function term (sum of gj(o(L)j) − gj(Lj)): For these we note that for every region
j 6= j1, jn the number of resources in region j do not changed, and gj(o(L)j)− gj(Lj) = 0. The operation o
removes a resource in j1 and add a resource addition in jn. Thus, the sum over regions gj(o(L)j)− gj(Lj)
over all regions j equals to ∆gjn(Ljn)−∆gj1(Lj1 − 1) = ∆+(j) + ∆−(j), as required.

Lastly, consider the type function term (sum of gj(o(L)j)−gj(Lj)). For these we note that the total number
of resources from each type does not change. Thus it is equal to zero.

Remark 8. Lemma 5.5 assumes that the operation o is an extended chain operation, and by definition
this means that it is a simple operation. The Lemma does not hold if o is an O(j1 → j2 → . . . → jn)
operation that is not simple; For example, suppose that o is an O(j1 → j2 → j1) operation that moves a
resource of type i from region j1 to j2, and the same resource from j2 to j1. Then according to Lemma 5.5
its profitability depends on the differential functions ∆g, which is not necessarily equal zero9. However
operation o is the identical operation (o(L) = L for every placement L), and thus its profitability equals to
zero.

5.6. The algorithm for finding a shortest profitable operation

As the profitability structure of an extended chain operation is differs across operations of the five classes,
the algorithm finds the shortest profitable operation for every particular class. Then, the algorithm will
compare the different shortest profitable operations and will choose the best operation among them. Except
for the fifth class, the implementation of the algorithm in each class is similar, with slight differences. The

9For instance if ∆gj1 (n) = n and ∆gj1i (n) = ∆gj2i (n) = 0, then the profitability of o equals to (−1) · (Lj1 −1) + 0 +Lj1 = 1

21

Figure 4: The graph with three regions j1, j2, j3 and with the appropriate weight edges w(j1 → j2) = (−1) ·maxi ∆i(j1 → j2),
w+(j) = (−1) ·∆+(j), w−(j) = (−1) ·∆−(j).

implementation for the fifth class is a little more complex and takes more time to compute by a factor of
k, where k is the number of regions (which is typically small), and can be seen in Appendix H. For sake of
presentation, we will show how the algorithm finds the shortest profitable operation over the class of chain
operations O(j1 → j2 → . . .→ jn). Our full algorithm is given in Appendix H.

Given the placement L, in the first stage the algorithm creates a complete digraph of region vertices 1, 2 . . . , k.
The graph G (depicted in Fig. 3 for 3 nodes j1, j2, j3) represents all extended chain operations E(jl1 →
jl2 → . . . → jln) such that between regions jlm and jlm+1

it moves the best resource type i(jlm → jlm+1
)

between them. More formally, the algorithm defines over the edges (jl1 , jl2) weights w(jl1 → jl2) = (−1) ·
maxi ∆i(jl1 → jl2), and saves i(jl1 → jl2) = arg maxi ∆i(jl1 → jl2) (i.e., the resource type that maximizes
Eq. (31)). Note that we multiply ∆i(jl1 → jl2) by (−1) as we convert a max profitable problem into a
shortest path problem (that requires finding a minimal length path, where we consider the edge weights as
edge lengths.).

The algorithm adds two nodes: a source node x and a sink node y, and connects for every region j edges
(x, j) and (j, y) of respectively weight w+(j) = (−1) ·∆+(j), w−(j) = (−1) ·∆−(j) (defined in Eqs. (32),
(33)). The graph G with its edge weights is depicted in Figure 4.

Note that a path P = (x, j1, j2, . . . , jimin−2, y) in the graph is corresponding to the best chain operation
o of format O(j1 → j2, . . . → jimin−2) and according to Lemma 5.5 the weight of the path P equals
to (−1) multiplied by the profitability of o. We will use this observation to find the shortest profitable
operation.

After constructing the graph G our algorithm considers the edge weights as edge lengths and uses the
Bellman-Ford algorithm [16], which computes in the ith iteration the shortest path between x and y that
uses at most i edges 10. It stops in the first iteration imin where the shortest path with imin edges has
negative weight. If the algorithm finds that the shortest path (and its length) is (x, j1, j2, . . . , jimin−2, y),
then the algorithm returns the chain operation O(j1 → j2, . . . → jimin−2) that moves from region jk to
jk+1 a resource of type i(jk → jk+1). According to the next claim, the algorithm finds a shortest profitable
operation:
Claim 5.6. The algorithm finds a shortest profitable operation over the class of chain operations O(j1 →
j2 → . . .→ jn).

10In the first iterations, when i = 1, there exists no path of length ≤ i between x and y; at these stages the length of the
”shortest path” between x and y is computed as ∞. Once a path exists, this length receives a finite value.

22

Proof. According to Lemma 5.5, the profitability of an operation of format O(j1 → j2 → . . . → jn) should
be less than or equals to the weight of the path (x, j1, j2, . . . , jn, y) multiplied by −1. Also, the profitability
of an operation that moves a resource of type i(jk → jk+1) from jk to jk+1 equals exactly to the weight
of the path (x, j1, j2, . . . , jn, y) multiplied by −1. Therefore, the weight of the shortest path of length
n + 2 ((x, j1, j2, . . . , jn−2, y)) equals to the profitability of the best extended chain operation of length n
(O(j1 → j2 → . . .→ jn)) multiplied by (−1).

Thus, there is a profitable extended chain operation of length n iff there is a shortest path of length n + 2
with negative weight. Since the shortest profitable operation is a profitable operation with minimal length,
then it is corresponding to a negative weight shortest path with minimal number of edges, which is what
the algorithm finds.

The complexity of creating the graph is O(k2 ·m) where k is the number of regions and m is the number
of resource types. This is because computing w(j1 → j2) takes O(m). Using Bellman-Ford on a graph
G = (V,E) takes at most O(V E) steps. Since our graph contains O(k) vertices and O(k2) edges - then the
running time of the second stage is O(k3). Thus the time complexity of our algorithm over the class of chain
operations that neither add a resource to j1 nor remove from jn not is O(k2(k +m)).

In Appendix H we show that finding the algorithms for shortest profitable operation in three other classes are
similar to this algorithm and they run at O(k2(k+m)) steps. Finding the shortest profitable operation among
the operations of the fifth class, however, is solved in a more expensive time complexity of O(k2(k2 + m))
instead of O(k2(k+m)). The details of this algorithm can be found in Appendix H. Thus, the full algorithm
which finds and compares the shortest profitable operations in each class takes O(k2(k2 +m)) steps.

Remark 9. We can use a similar algorithm that instead of using region nodes 1, 2 . . . , k it uses resource type
nodes 1, 2, . . . ,m. The complexity of such algorithm is O(m2(k + m2)). Choosing the right algorithm as a
function of the parameters (k,m) allows us to find the shortest profitable operation in O(min(k,m)3(k+m))
steps.

5.7. Every shortest profitable operation is an extended chain - proof of Theorem 5.4

Proof of Theorem 5.4. We use the reduction to a min-cost flow described in Theorem 3.6 and Figure 3.
The methodology of reduction to a graph flow problem allows us to conduct the analysis in the domain
of graphs theory. Given a flow fL corresponding to placement L in the 4-layer graph G4 we use the
residual multigraph G4

fL
that will allow to represent all possible operations o (placement changes) on L

by augmenting flows through its cycles.

The residual multigraph G4
fL

is constructed as follows: 1) If the flow of an edge e in G4 is fL(e) = 0, then

add e to the residual multigraph G4
fL

; the edge e in G4 that was added to the residual multigraph G4
fL

is

called original edge. 2) If the flow of an edge e = (u, v) in G4 is fL(u, v) = 1, then add its reverse edge
(v, u) to the residual multigraph G4

fL
. In such case, the original edge (u, v) is not added to the residual

multigraph G4
fL

. Given a weight function of the 4-layer graph edges w : E → R+, we define the residual

weight function over the edges of the residual multigraph G4
fL

as wfL(e) = w(e) for every original edge and

wfL(v, u) = −w(u, v) for every reverse edge (v, u) in G4
fL

. For example, the residual multigraph of Figure 3
is presented in Figure 5. The formal definition of a residual multigraph Gf for a general (multi) graph G
and flow f is given in Appendix I.

When some operation o changes a placement L to placement o(L) the flow corresponding to L, fL, is changed
to the flow corresponding to o(L), fo(L). The flow value of both flows equals to |fL| = |fo(L)| = s. It is
well-known that when a flow f in a general graph G can change to another flow f ′ with the same flow value
(|f | = |f ′|), the change can materialize by augmenting the flow through cycles C1, C2 . . . Cn in the residual
multigraph Gf [See The Augmenting Cycle Theorem (Theorem Appendix I.2) in Appendix I]. We define the

23

y

Area nodes Type nodes

x

-0.3

0.5

-0.2

0.1

0.35

0

0

0

0

0.3

0.2

0.5

0.4

-0.1

Figure 5: The residual multigraph G4
fL

where Laα = Laβ = 1 and Lbα = 0, Lbβ = 1 (the flow fL is depicted in Figure 3). Red

edges are reverse edges with flow fL(e) = 1, and blue edges are original edges with flow fL(e) = 0. Between every two nodes
there are totally s(= 4) edges. We omit some blue edges from the graph for the sake of presentation.

y

Area nodes Type nodes

x

-0.3

-0.2

0.1

0.35

0.3

0.20.4

Figure 6: The residual operation multigraph G(o, L), a subgraph of G4
fL

from Figure 5, where o is an operation that adds two

α-type resources to region a, and removes two β-type resources, one from region a and one from region b. The dotted edges
represent the lowest weighed cycle C in G(o, L). An augmentation through C will add one α resource to a and remove one β
resource from a (this operation is o∗(o, L)).

residual operation multigraph G(o, L), a sub-graph of G4
fL

, as the union of cycles such that augmenting

one unit of flow through them changes the flow fL to fo(L) in G4
fL

, i.e.,

G(o, L) =
⋃
Ci. (34)

A detailed description the structure (and how to build)G(o, L) is given in Appendix J (Observation Appendix
J.1) and an example is given in Example 5.1 below. Since the weight of a flow fL is minus the profit of L
plus some constant c (see Claim 3.7), then the sum of edge weights of the residual operation multigraph is
the minus the operation profitability, i.e., ∑

e∈G(o,L)

wf (e) = −∆(o, L). (35)

24

Next, we define a lowest weight cycle C as a simple cycle with minimal weight in G(o, L); note that
G(o, L) might have more than one such cycles.

Example 5.1. Let G4
fL

be the residual graph depicted in Figure 5, which is corresponding to the placement

Laα = Laβ = 1 and Lbα = 0, Lbβ = 1. Note that the flow fL is depicted in Figure 3. Suppose that o is an
operation that adds two α-type resources to region a, and removes two β type resources, one from region
a and one from region b. The residual operation multigraph G(o, L) is depicted in Figure 6, where every
original edge is corresponding to adding a resource, while every reverse edge is corresponding to removing
a resource. Note that the residual multigraph consists of a collection of cycles, as stated above. Eventually,
after augmenting flow through G(o, L) we change the flow fL corresponding to placement L to the flow
corresponding to o(L). The lowest weight cycle C, i.e., the simple cycle with the lowest weight in G(o, L),
is depicted in dotted edges.

Next, given two operations, o and o′ we say that o is a sub-operation of o′ and denote o′ ⊆ o if o′ uses
a subset of unit operations (operations that either add or remove a single resource) from o′. For example,
consider o in Figure 6 consisting of adding two α-type resources to region a, and removing two β type
resources, one from region a and one from region b. It has a sub-operation o′ that adds one α-type resource
to a and removes one β type from b. We can see that the operation o′ is corresponding to augmenting
flow trough the lowest weight cycle C. Also, note o′ is an extended chain of zero length (See Remark 7 in
Section 5.4).

This leads to our first lemma used to prove Theorem 5.4:

Lemma 5.7. For every operation o and placement L there exists a sub-operation of o, to be denoted by
o∗(o, L) ⊆ o that possesses the following two properties: 1) There is a lowest weight cycle C such that
augmenting flow through C is corresponding to o∗(o, L), i.e., it changes the flow fL to fo∗(o,L)(L), and 2)
operation o∗(o, L) is an extended chain operation or a composition of two operation-disjoint extended chain
operations.

Proof. The detailed proof requires many details. For this reason we provide here the main arguments of the
proof and a full formal proof can be seen in Appendix J.

The proof first characterizes the structure of the residual operation multigraph G(o, L) (see Observation Ap-
pendix J.1). One such property is that for every region node j and resource type node i, the residual operation
multigraph G(o, L) (and therefore every lowest weight cycle C) cannot contain both original edges from j to
i and reverse edges from j to i. Now suppose C is a lowest weight cycle in the residual operation multigraph
G(o, L). We define operation o∗(o, L) such that for every region node j and resource type node i it does the
following:

For every region node j and resource type node i do:

• If C contains original edges from j to i, then o∗(o, L) adds a type i resource to region j.

• If C contains reverse edges from i to j, then o∗(o, L) removes a type i resource from region j.

• If C does not contains edges between i and j, then o∗(o, L) will not change the number of type i
resources from region j.

We show that there is a lowest weight cycle C ′ such that augmenting flow through C ′ changes the flow
corresponding to placement L to the flow corresponding to placement o∗(o, L)(L) (Claim Appendix J.2).

Next, we characterize all cycles in the residual operation multigraph G(o, L) (Claim Appendix J.3) and
show that every cycle can be one of six classes. Five of these classes represent extended chain operations,
and one class represents a composition of two disjoint extended chain operations. For example, one of these
class contains all cycles of format j1 → i1 → j2 → i2, . . . ,→ jn → x → j1 where jk are regions and ik are

25

resources types. If the lowest weight cycle C is a cycle of such class, then operation Oc is the extended chain
that moves a resource of type ik from jk to jk−1.

Having shown that for every operation o there exists a sub-operation (denoted by o∗(o, L)) corresponding
to a lowest weight cycle C, which is an extended chain operation (or composition of two disjoint extended
chain operations), we can conclude the proof Theorem 5.4 by showing that if oL is the shortest profitable
operation of L then oL = o′(oL, L). This is proven in the following lemma:

Lemma 5.8. Let L be a placement and let oL be its shortest profitable operation. Then the following claims
hold:

1. The operation oL equals to the operation o′(oL, L) chosen in Lemma 5.7.

2. The operation oL is not a composition of two disjoint extended chain operations.

Proof. First, we show that o′(oL, L) must be a profitable operation. Let C be the lowest weight cycle C
corresponding to o′(oL, L). Suppose that C is a non-negative cycle. Since C is a lowest weight cycle in
G(oL, L), all cycles C1, C2, . . . , Cn composing the residual operation graph G(o, L) =

⋃n
i=1 Ci have non-

negative weights wf (Ci) ≥ 0. Thus the profitability of oL, which equals to minus the sum of cycles weights
i.e., ∆(o, L) = −

∑
e∈G(o,L) wf (e) = −

∑n
i=1 wf (Ci) (Eqs. (35),(34)), is non-positive - a contradiction that

oL is shortest profitable, which is in particular a profitable operation. Thus, the operation o′(oL, L), which
is corresponding to augmenting flow through C and its profitability is minus the weight of C, is profitable.

Suppose that o′(oL, L) is not equal to o. Then o′(oL, L) is a sub-operation of o that uses strictly less
repositions than o, which is profitable. This forms a contradiction since o is a shortest profitable operation.
Therefore o = o∗(o, L), i.e., o is an extended chain or a composition of two disjoint extended chain operations.

To prove the second part of claim suppose that o is a composition of two disjoint extended chain operations
o1, o2. Then one of these sub-operation operations is profitable (otherwise, o is not profitable) that uses less
repositions than o - a contradiction as o is a shortest profitable operation. Therefore, o must be an extended
chain operation.

6. An Online Hybrid Multi-Period Algorithm (Hybrid)

In an online multi-period environment one must decide on the optimal placement of resources over multiple
periods, t = 1, 2, 3, . . . , where at each period t one receives a prediction of the demand at period t+ 1 and
needs to decide how to reposition the resources at time t + 1 as a function of the demand at D(t + 1) and
the placement at t.

Two challenges must be faced by such algorithm: 1) The number of resources that can be repositioned
between t and t+1 is usually bounded, due to physical or economical constraints. 2) It is desired to overcome
temporal fluctuations and to avoid back-and-forth repositions due to temporal changes in demand.

To address these objectives the algorithm combines the SCO algorithm developed in Section 5, and the
sensitivity results developed in Section 3. When it senses (using the sensitivity results) large deviation in
the demand it conducts SCO and repositions as many resources as possible (up to the maximal number
possible, rmax). When it senses small deviation in the demand it conducts only minimal (or zero) number
of repositions to avoid redundant fluctuations.

To this end the Hybrid algorithm holds three threshold parameters ε, rmin and rmax, where rmin < rmax.
At time t the Hybrid algorithm holds a reference demand set Dref (t) equaling D(τ) for some τ < t, where
τ is the last time where the algorithm conducted a large reposition. It also holds as reference the placement
at time t − 1, L(t − 1). Given distributions Dref (t), D(t) and placement L(t − 1) the algorithm computes

26

the placement at period t, L(t). The algorithm determines whether D(t) and Dref (t) are weakly ε-near. If
they are - it conducts a ”minimal” reposition by running SCO over placement L(t− 1) (with its associated
flow), with the reposition cost threshold set to rmin. Otherwise, it conducts a ”maximal possible” reposition
by running SCO over placement L(t − 1) with the reposition cost threshold set to rmax and then resets
τ = t.

Note that if we set ε = 0, Hybird is equivalent to SCO with rmax. If we set ε =∞, Hybird is equivalent to
SCO with rmin.

7. Model extensions

In this section we study two extensions of the model studied in this paper.

7.1. The Unconstrained Placement Problem with Reposition Costs

A related problem to the Constrained Reposition Problem is whereby repositions are attributed with (linear)
costs rather than being considered as a constraint.That is, in that problem one seeks an optimal reposition
where each reposition incurs some (fixed) cost and these costs are added to the profit function. The generality
of our profit function allows the operator to capture different operational costs, and in particular, it allows
to capture costs associated with reposition the resources between different time periods.

Suppose that the operator repositioned the placement L(t) = {Lji (t)} at the beginning of period t, creating

a new placement L(t+ 1). The cost of adding a new type-i resource to region j equals to πji ≥ 0 while the

cost of removing type-i resource from region j is θji ≥ 0. The reposition cost of type i in region j between
periods t and t+ 1 equals to

Rep(t)
j
i (L

j
i (t+ 1)) = πji ·max(L(t+ 1)ji − L(t)ji , 0)︸ ︷︷ ︸

number of type-i resources added to region j

+θji ·max(L(t)ji − L(t+ 1)ji , 0)︸ ︷︷ ︸
number of type-i resources removed from region j

. (36)

The Unconstrained Placement Problem with Reposition costs is formulated as follows: Given the placement
L(t) of the previous period and the new demand D(t+ 1), find the placement L(t+ 1) that maximizing the
profit P (D(t+ 1), L(t+ 1)) minus the reposition costs i.e.,

max
L(t+1)

ED(t+1)[P (L(t+ 1), D(t+ 1))]−
m∑
i=1

k∑
j=1

Rep(t)
j
i (L

j
i (t+ 1)). (37)

Similarly to the Unconstrained Placement Problem without Reposition costs, we assume that the marginal
functions of P , i.e., ζ are concave.

As we formulate next that the Unconstrained Placement Problem with Reposition costs can be reduced
to the general Unconstrained Placement Problem (without Reposition costs), and can be solved using the
transformation to the min-cost flow problem as described in [6].
Theorem 7.1. The Unconstrained Placement Problem with Reposition costs can be reduced to the Uncon-
strained Placement Problem without Reposition costs.

Proof. To show the reduction - we define a new profit function P ′, that is constructed to be equal to the
profit P minus the reposition costs Cji . Such profit function should be expressed as we done in our modeling
section (Section 2.1). The profit function P ′ has the same model parameters as in P (i.e., the same local
and global revenue parameters (Rji > 0 and Ri > 0), the same number of requests a type i resource can

27

serve concurrently Bi etc.), with only one exception: the area+type local cost functions, C ′
j
i includes the

repositions costs, i.e., equals to

C ′
j
i (L

j
i) = Cji (Lji) +Rep(t)

j
i (L

j
i), (38)

where Cji (Lji) is the local cost function of the original profit function P , and Rep(t)
j
i (L

j
i)) is the reposition

cost.

As we only change the local costs, the new profit function P ′ equals to the original profit function P minus
the reposition costs for every resource type i and region j, i.e.,

∑m
i=1

∑k
j=1Rep(t)

j
i (L

j
i)).

Note that the optimal solution provided for the Unconstrained Placement Problem, as described in [6] holds
only if the marginal functions are concave (see Section 2.3). That means, we need to show that the marginal
profit functions of P ′, denoted by ζ ′, are concave. Since only the local costs Cji have changed, it is remain

to show that only the area+type marginal functions ζ ′
j
i are concave. According to Eq. (39), these functions

are equal to

ζ ′
j
i (L

j
i , D

j
i) = ζji (Lji , D

j
i)−Rep(t)

j
i (L

j
i). (39)

where ζji are the area+type marginal functions of the original profit function P , and Rep(t)
j
i are the repo-

sition costs.

Now, note that the negation of reposition cost function −Rep(t)ji (L
j
i) can be shown to be a concave function,

i.e., the differential of the reposition cost −Rep(t)ji (L
j
i) is monotonically decreasing: according to Eq. (36) the

differential equals to Rep(t)
j
i (L

j
i)−Rep(t)

j
i (L

j
i+1) = −πji for Lji ≥ L(t)ji and Rep(t)

j
i (L

j
i)−Rep(t)

j
i (L

j
i+1) =

θji otherwise. Since the reposition constants πji , θ
j
i are non-negative, then the negation of reposition cost

functions −Rep(t)ji are concave.

The marginal function ζji (Lji , D
j
i) of P is assumed to be concave. Thus, by Eq. (39), the marginal functions

of P ′, ζ ′
j
i (L

j
i , D

j
i), are a sum of concave functions, and thus they must be concave.

Finally, in [6] we described an algorithm that solves the Unconstrained Placement Problem in O(|L|km(k+
m)), where |L| is the size of the optimal placement (which is bounded by our storage constant s), k number
of regions and m number of resource types m.

7.2. The parameterized Unconstrained problem – Can it be used to solve the constrained reposition prob-
lem

The Parameterized Unconstrained Problem is a special case of the Unconstrained Placement Problem with
Reposition Costs, whose solutions can possible used to solve the Constrained Reposition Problem for par-
ticular reposition constants r. Formally, the Parametrized Unconstrained Problem is defined as the Un-
constrained Placement Problem, where every reposition (add or subtract) incurs a cost of λ ≥ 0. Given
a reposition cost parameter λ, the Parametrized Unconstrained Problem is to find the optimal placement
Lpar(λ) with the larger parametrized profit, i.e., solves the following problem (similar to Eq. (37)):

max
L(t+1)

ED(t+1)[P (L(t+ 1), D(t+ 1))]− λ ·
m∑
i=1

k∑
j=1

|L(t+ 1)ji − L(t)ji |. (40)

The Parametrized Unconstrained Problem, can be solved using the same solution of the Unconstrained
Placement Problem with Reposition Costs.

Now suppose that a solution Lpar(λ) has repositioned rλ resources. Let L be a placement that repositioned
at most rλ resources. Then the profit P (L,D(t+ 1)) of L can not be larger than the profit of Lpar(λ) (i.e.,

28

P (Lpar(λ), D(t+1)) ≥ P (L,D(t+1))); otherwise, L has a larger parametrized profit (described in Eq. (40))
than Lpar(λ) and L(λ) is not an optimal placement for the Parametrized Unconstrained Problem. Thus, we
present the following corollary:
Corollary 7.2. Suppose Lpar(λ) solves the Parametrized Unconstrained Problem with parameter λ, and
uses rλ repositions. Then Lpar(λ) solves the Constrained Reposition Problem under rλ repositions.

Note that this corollary does not contradict the hardness of the Constrained Reposition Problem (presented
in Section 4); Given a general reposition constant r, it is hard to find a parametrized solution Lpar(λ) which
uses exactly rλ = r repositions. However, the corollary may helps us in attempting to find the optimal
solution for particular constraint r, by solving the Parameterized Unconstrained Problem for a variety of λ
values and hoping that one of the resulting rλ values will be close to r. A binary search over the lambda
values can possibly expedite this search by utilizing monotonicity.

This corollary enables to us to measure the effectiveness of every heuristic strategy for solving the Constrained
Reposition Problem. Suppose that Lpar(λ) is a parametrized solution that uses rλ repositions, and let LA(λ)
be the solution an heuristic algorithm A finds under rλ repositions. Using Corollary 7.2 we can evaluate the
performance of A by exploring a set of reposition parameters λ and comparing for each of them to the profit
of its placement LA(λ) with that of the optimal constrained reposition problem Lpar(λ). This approach is
used in Section 8.4, when we measure the effectiveness of SCO.

7.3. Modeling Extensions of unsatisfied requests

In the appendix (Section Appendix A) we extend our modeling to include in our profit function negative
service costs of unsatisfied requests. In our current modeling unsatisfied requests has no impact on the profit
function. We show that such generalized profit function incorporating unsatisfied requests can be expressed
as a profit function which does not incorporates unsatisfied requests plus a constant depending only on
the demand (and not on the placement). Thus, solutions for the Constrained Reposition Problem, where
unsatisfied requests has no impacts (such as the SCO solution provided in Section 5) can be used.

8. Performance evaluation of the dynamic algorithms

In this section we evaluate the performance of the dynamic algorithms presented in this article; for the sake
of providing a scale of reference we compare them with the Proportional Mean placement - A replication
strategy proposed in [5]. We simulate a mobile game app that requires real-time service by servers located
on a geographically distributed cloud (e.g Amazon EC2 servers). For the sake of a addressing a realistic
case we use the price structure of Amazon EC2([17]).

8.1. Parameter Settings

We refer to our model (Section 2) for a full explanation of our simulation parameters. To achieve good
performance the mobile app provider aims at receiving service at the cloud servers located in proximity to its
clients (users). To this end it places the servers in k = 3 regions, located in the USA, Europe and Asia. The
application provider serves offers two different applications (m = 2), each requiring different type of platform
from the service provider (e.g. either a Windows platform or a Red Hat Enterprise Linux (Linux) platform
on the cloud). We assume that both types of cloud platforms can serve up to BWindows = BLinux = 500
users.

The revenue constants Ri, R
j
i (see Eq. (6) (7)) are respectively associated with serving locally a user

requesting type i platform in region j and serving a user requesting type i platform across all regions. We
assume that the revenue of serving locally a type i user is uniform Europe across regions, and denote this local
constant by Rloci := Rji , for all platform type i ∈ {Windows, Linux} and region j ∈ {USA,Europe,Asia}.

29

We denote for sake of presentation the other (global) service constant by Rgloi := Ri. These revenue constants

Rgloi , Rloci can be defined as the Average Revenue Per User (ARPU) of granting a user request. The ARPU
may vary across mobile applications as reported in [18]. The full details assumed for the revenue constants
can be found in Table K.1 in Appendix K, where we use values similar to those reported in [18].

Due to the cloud provider limitation on on-demand servers, the application provider cannot rent more than
20 servers per region, (similar to the limitations of Amazon EC2 [17]), i.e., we set the area costs to be
CUSA(x) = CEroupe(x) = CAsia(x) =∞ for any x > 20.

We set the area & type cost function (See Eq. (6)) to be a linear function Cji = pji ·x where pji are the prices
of renting an on-demand instance of resource i in region j. In Table K.2 in Appendix K we provide the on-
demand costs pji . The costs are based on 2014 Amazon EC2 price system on the m3.medium VM instances
[17], on Windows and Linux platforms, over three regions: North Carolina (USA), Ireland (Europe) and
Singapore (Asia). Note that when using Amazon EC2 servers there are no area or type costs and thus we
can set the area and type cost functions to be zero (See Eq. (7), Eq. (8)), i.e., CUSA(x) = CEroupe(x) =
CAsia(x) = 0 for every x ≤ 20, and CWindows(x) = CLinux(x) = 0 for every x.

We set the total number of requests for resource type i in area j on time t, Dj
i (t), to be a time-dependent

Poisson distribution with parameter λji (t) (as done in [19] and [20]). Our dynamic scheduling uses an hourly
based prediction, where in every area the average number of requests for Windows and Linux servers is the
same i.e., λjLinux(t) = λjWindows(t). We set the demand parameter to be a periodic function that increases
during day time and decreases during night time (usually, between 4 Pm till 4 Am) as done in other studies
(such as [20]). Also, in some web applications (such as [4]) the arrival rate is considered to be unpredictable
with a higher variability due to some noise factor. In order to simulate such arrival rates, we add an Additive
White Gaussian Noise to the arrival rate formula. Thus, the arrival rate is

λji (t) = 3000 · sin(
tj · π
24

) + 300 · ζ, (41)

where ζ is a white noise, generated by the standard Gaussian (Normal) distribution, and tj is the local time
at area j.

Finally, given a period t, we compute the local time in the USA by tUSA = (t mod 24), the local time in
Europe by tEurope = ((t+ 6) mod 24), and in Asia tAsia = ((t+ 12) mod 24).

8.2. Performance of the dynamic algorithms over time varying predicted demands

We evaluate the reposition cost (the number of repositions made by the algorithm) as well as the deviation
of the placement profit (deviation from optimality) under an arrival rate of λji (t) (as given in Eq. (41))
over a time range of t = 0, 1, . . . , 47 and compare the following algorithms: 1) The optimal unconstrained
placement.11 2) The SCO 12. algorithm (Section 5) with reposition cost r = 4. 4) The Hybrid algorithm
(Section 6) with thresholds ε = $2000, rmin = 2, rmax = 4. 5) A placement strategy called Proportional
Mean, as proposed in [5], where the number of type i servers allocated in every area j is proportional
to demand, i.e., there exists a constant α > 0 such that Lji (t) = α · E(Dj

i (t)). For our simulations we
set α = 1.2. For all applicable algorithms above, the placement allocated in time t = 0 is the optimal
unconstrained placement with respect to demand D(t) = D(0).

In Figure 7 we depict the Relative Reposition Cost (RRC). The Relative Reposition Cost is defined as
the reposition cost (the number of repositions made by the algorithm) normalized by the number of servers
placed. The RCC represents the percentage of servers that were changed.

11At every time t an optimal placement is conducted over the demand L(t). Recall that while the optimal reposition under
reposition constraint is a hard problem (See Section 4), the optimal unconstrained placement (reposition constraint set to
infinity) is solvable in polynomial time.

12The actual algorithm used in the simulation is an approximate implementation of SCO, called SCC (details of SCC are in
[6])

30

Figure 7: Relative Reposition Cost

Figure 8: Relative deviation of the placement profit

We observe the following results: 1) The Hybrid algorithm incurs the lowest reposition cost of at most
10%, and sometimes 0% (i.e., no reposition between successive periods). The Hybrid has the lowest average
reposition cost of the only 5.7%, while the optimal unconstrained placement and Proportional Mean have
respectively 15.8% and 16.8%. This means that, the average reposition cost of the Hybrid algorithm is 65%
lower than that of the other two algorithms. 2) Proportional Mean and the optimal unconstrained placement
incur a large reposition cost, ranging between 10%− 20%. 3) SCO has (almost) a constant reposition cost,
which is always around 10%. Its average reposition cost is 9.8%, which is higher than the Hybrid algorithm
by a factor of 1.7.

Next we examine whether the fact that the Hybrid algorithm operates under reposition constraints, allows
it to achieve close to optimal placements. To this end we depict in Figure 8 the relative deviations of the
placement profit which we called the Relative Profit Deviation for all the algorithms examined; the
Relative Profit Deviation is defined as the deviation of placement profit normalized by the profit of the
optimal unconstrained placement; the Relative Profit Deviation is the difference between the profit of an
optimal (unconstrained) placement and the placement profit13.

We observe that the Relative Profit Deviation of all the dynamic algorithms studied is at most 2%. Note
that the Hybrid placement algorithm achieves very efficient placements, whose relative deviation is bounded
by 1.3%, while obeying strict reposition constraints.

For the sake of completeness we depict in Figure 9 the absolute (non relative) profit deviation achieved by
the algorithms in these runs. We observe that: 1) SCO has the minimal profit deviation (at most $130 per
hour) with low variability. 2) The Hybrid algorithm is better than Proportional Mean (deviations of Hybrid

13Recall that as opposed to the optimal reposition problem under reposition constraint (as studied in this work) that is a
hard problem(See Section 4), the optimal unconstrained placement is solvable in polynomial time.

31

Figure 9: absolute deviation of the placement profit

and Proportional Mean are bounded by $200 and $400 respectively). 3) Proportional Mean suffers from
high variability compare to the Hybrid algorithm and SCO.

8.3. Performance Evaluation - conclusions

We observed that the Hybrid algorithm has the lowest number of repositions used. The average number
of repositions it uses is lower by 65% than the number of repositions the optimal unconstrained placement
uses, as well as Proportional Mean. The Relative Profit Deviation of the Hybrid algorithm is at most 1.3%,
better than Proportional Mean.

Although SCO has Relative Profit Deviation smaller than that of the Hybrid algorithm, it uses more reposi-
tions. Proportional mean, as well as the optimal unconstrained placement, incur, as expected, high reposition
costs.

8.4. Comparing the performance of SCO to the parametrized unconstrained solution

We use real demand traffic, taken from [3], to numerically evaluate SCO and compare it to the optimal
solutions of the Parametrized Unconstrained Placement problem described in Section 7.2. We have shown
that if a parametrized solution L(λ) uses r repositions then L(λ) solves the Constrained Reposition Problem
under r repositions. We are interested in examining how SCO compares to these optimal solutions.

We consider a single type system (m = 1) where the cost and revenue functions are linear and the revenue
from serving a local request is 1.5 larger than that of a remote request. In the lack of real demand data we
use data from [3] that reflects the demand of three data centers. Using that data we consider k = 3 regions
where the demands at t are D1 ∼ N(334, 1152) (i.e., Normal demand with (mean, stdvar)= (400,100)),
D2 ∼ N(504, 1002), D3 ∼ N(186, 552) and the demands at t+ 1 are shifted cyclically. .

In Figure. 10 we depict the profit of SCO and compare it to the profit of the parametrized solutions. We
run SCO for reposition parameters r = 1 + 30 ∗ ind for 0 ≤ ind ≤ 25, and depict the profit of parametrized
solution L(λ) for reposition cost parameter λ = ind ∗ 0.1, where 0 ≤ ind ≤ 29. We can see that SCO is the
optimal strategy, and have similar performance to the parametrized solutions.

We note that the parametrized solutions do not cover all the optimal solutions of the Constrained Reposition
Problem. For example, there is a large gap between the parametrized solutions L(1) and L(0.9). The profit
and number of repositions that L(0.9) uses are significantly larger than those of L(1). Thus, we see the
need to used our SCO algorithm that can provide (nearly-optimal) solutions for the Constrained Reposition
Problem for any value r .

32

Figure 10: Performance of SCO compared with the parametrized unconstrained solutions. Reposition cost parameters values
are indicated above the curve.

9. Related Work

The problem of resource placement in distributed systems often falls under facility location theory [21]. This
area has received significant attention from the viewpoint of both analysis and algorithmic solutions. Our
version of the problem differs from traditional facility location problems in that it incorporates stochastic
demands, and that it focuses on how to reposition the resources in response to changes in the demand.

Early works on distributed resource placement primary focused on placing content replicas across a content
distribution or a web cache network (see e.g. [22, 23]). Other more modern works studied resource replication
in P2P systems. For example, [5] examined file placement in hierarchically-organized topology; and [24]
proposed an optimal movie replication algorithm across peers. However, most of these works have focused
on static allocations that account mainly for service costs; while others did consider dynamic settings
(e.g., [25]), but payed little attention to resource placement and reconfiguration overhead.

With the growth of cloud computing and large-scale dynamic services, the problem of dynamic server
placement in a geo-distributed environment (by service provides) has received increasing attention. For
example, [26] focused on dynamically optimizing service placement while ensuring performance requirements;
and [27] studied algorithms for dynamic scaling of social media applications. Other works looked at the
problem from a cloud provider’s viewpoint of how to assign newly proviosined virtual machine to distributed
datacenters [28]. These works typically assume that demands are approximately deterministic, and develop
an optimization problem (based on deterministic inputs), which is solved periodically. As the demand in
geo-distributed settings can be highly variable, the deterministic approach can lead to inaccuracies in the
placement and operating costs. In contrast, we provide a dynamic algorithm that inherently accounts for
the full demand distribution and for repositioning costs, yielding a cost-effective solution better geared for
modern distributed settings.

Other policies for server placement look at the long-term horizon given predicted stochastic demand [29, 30],
and stochastic load balancing of VMs in datacenters [31]. They use heuristics to compute an efficient (in
time) solution, while our work finds an optimal solution in polynomial time. Further, [29, 30] do not capture
the reposition cost overhead, and thus allow for large number of repositions, a costly task in practice.

A similar model to ours is also used to optimize server and task scheduling in cloud settings [32],[33]. In
these works, every server (or task) execution has a a start and finish time, making these problems harder
then placement problems, and resulting either in non optimal heuristic strategies (though with polynomial
runtime), or close to optimal solutions but with exponential run-times.

33

This work solves the problem of dynamic resource placement with dynamically changing stochastic demands
under a general and rich cost model. Our related work [15] considered a more limited model of a single-type
multi-region setting, which allows for a greedy-like optimal solution. In contrast, this work solves a multi-
type multi-region setting, that requires dealing with a complex cost function that accounts for area-specific,
resource-type specific, and combined area-type marginal costs (see Eq. (1)). Consequently, we show that
the problem is hard, and thus it requires new techniques. Further, unlike previous work, this paper deals
with sensitivity analysis of the problem: we demonstrate that reposition problems can be mapped to a min-
cost flow problem (in graph theory), yielding a general technique to derive sensitivity bounds on placement
profit.

10. Concluding Remarks

We dealt with the problem of dynamic resource placement, accounting for dynamically changing stochastic
demands with arbitrary distributions as well as for a very rich cost model. We showed that dynamic demand
fluctuations may inflict huge reposition costs and therefor a dynamic placement algorithm must account for
them. We showed that, in contrast, small demand deviations result with minor effect on revenues and
profits.

We analyzed the constrained reposition problem and provided strong evidence that under the wide setting
of this work the problem at large is hard. We therefore provided a heuristic algorithm, called SCO, that
is guaranteed to find the optimal solution in several important special cases. For a multi-period online
setting we proposed Hybrid, an algorithm that avoids repositioning when the demand changes are small and
conducts SCO when they are large. Simulation results show that Hybrid achieves very good placements
while avoiding large repositions. The subject of how to deal with a multi-period problem where all future
demands are known in advance is the subject of ongoing research.

Acknowledgment

We would like to thank Noga Alon for helpful discussions on the hardness of the discussed problems. This
research was supported by grants from the Israeli ministry of Science and from the Blavatnik Fund. We
thank anonymous referees for their helpful comments and proposing the reposition-cost model.

References

[1] Amazon EC2 home page. http://aws.amazon.com/ec2 (2013).
[2] Microsoft Azure home page. http://www.windowsazure.com (2013).
[3] I. Narayanan, A. Kansal, A. Sivasubramaniam, B. Urgaonkar, S. Govindan, Towards a leaner geo-distributed cloud

infrastructure, in: Proceedings of HotCloud, 2014.
[4] V. Cardellini, E. Casalicchio, F. L. Presti, L. Silvestri, Sla-aware resource management for application service providers

in the cloud., in: NCCA, 2011, pp. 20–27.
URL http://dblp.uni-trier.de/db/conf/ncca/ncca2011.html#CardelliniCPS11

[5] S. Tewari, L. Kleinrock, Proportional replication in peer-to-peer networks, in: IEEE INFOCOM, Barcelona, Spain, 2006.
[6] Y. Rochman, H. Levy, E. Brosh, Dynamic placement of resources in cloud computing and network applications - technical

report, https://drive.google.com/folderview?id=0B5v_NLuOQ1TAOVBQd3pTXzFXMlU&usp=sharing (2014).
[7] E. Weisstein, Kolmogorov-smirnov test, http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html.
[8] A. Klenke, J. G. universitat Mainz, L. Mattner, Stochastic ordering of classical discrete distributions (2010).
[9] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993.

[10] Y. Rochman, H. Levy, On sensitivity of dynamic min cost flows - technical report, https://goo.gl/SWsQ8V, to be submit-
ted.

[11] Y. Rochman, H. Levy, E. Brosh, Max percentile replication for optimal performance in multi-regional p2p vod systems,
in: Proceeding of the 9th International Conference on Quantitative Evaluation of SysTems (QEST) 2012, London, UK,
2012.

[12] C. H. Papadimitriou, M. Yannakakis, The complexity of restricted spanning tree problems, J. ACM 29 (2) (1982) 285–309.

34

http://dblp.uni-trier.de/db/conf/ncca/ncca2011.html#CardelliniCPS11
http://dblp.uni-trier.de/db/conf/ncca/ncca2011.html#CardelliniCPS11
http://dblp.uni-trier.de/db/conf/ncca/ncca2011.html#CardelliniCPS11
https://drive.google.com/folderview?id=0B5v_NLuOQ1TAOVBQd3pTXzFXMlU&usp=sharing
http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html
https://goo.gl/SWsQ8V

[13] Y. Raphael, Almost exact matchings, Algorithmica 63 (1) (2012) 39–50.
[14] Exact matching in red-blue bipartite graphs- egervry research group on combinatorial optimization (egres). (2016).

URL http://lemon.cs.elte.hu/egres/open/Exact_matching_in_red-blue_bipartite_graphs

[15] Y. Rochman, H. Levy, E. Brosh, G. Gilboa-Freedman, Resource repositioning in distributed clouds - technical report,
https://goo.gl/Tjntfw, to be Submitted.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, Second Edition, The MIT Press and
McGraw-Hill Book Company, 2001.

[17] Amazon EC2 pricing page, http://aws.amazon.com/ec2/pricing/ (2014).
[18] Think Gaming: top paid games, http://thinkgaming.com/app-sales-data/top-paid-games/ (2014).
[19] X. Nan, Y. He, L. Guan, Optimal allocation of virtual machines for cloud-based multimedia applications., in: MMSP,

IEEE, 2012, pp. 175–180.
[20] B. Zhang, G. Kreitz, M. Isaksson, J. Ubillos, G. Urdaneta, J. A. Pouwelse, D. H. J. Epema, Understanding user behavior

in spotify., in: INFOCOM, IEEE, 2013, pp. 220–224.
[21] Z. Drezner, H. W. Hamacher, Facility Location: Applications and Theory, Springer, 2002.
[22] L. Qiu, V. N. Padmanabhan, G. M. Voelker, On the placement of web server replicas, in: IEEE INFOCOM, Anchorage,

AK, USA, 2001.
[23] F. L. Presti, C. Petrioli, C. Vicari, Distributed dynamic replica placement and request redirection in content delivery

networks, in: MASCOTS, 2007, pp. 366–373.
[24] Y. P. Zhou, T. Z. J. Fu, D. M. Chiu, Statistical modeling and analysis of p2p replication to support vod service, in: IEEE

INFOCOM, Orlando, FL , USA, 2011.
[25] Y. Chen, R. H. Katz, J. D. Kubiatowicz, Dynamic replica placement for scalable content delivery, in: International

Workshop on Peer-to-Peer Systems, Springer, 2002, pp. 306–318.
[26] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, J. L. Hellerstein, Dynamic service placement in geographically distributed

clouds, IEEE Journal on Selected Areas in Communications 99 (2013) 762–772.
[27] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, F. C. Lau, Scaling Social Media Applications into Geo-Distributed Clouds, in:

IEEE INFOCOM, Orlando, Florida, USA, 2012.
[28] H. Xu, B. Li, Joint Request Mapping and Response Routing for Geo-distributed Cloud Services,, in: IEEE INFOCOM,

Turin, Italy, 2013.
[29] S. Chaisiri, B. Lee, D. Niyato, Optimal virtual machine placement across multiple cloud providers, in: APSCC, 2009.
[30] S. Chaisiri, R. Kaewpuang, B. Lee, D. Niyato, Cost minimization for provisioning virtual servers in amazon elastic compute

cloud, in: MASCOTS, 2011.
[31] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, Y. Pan, Stochastic load balancing for virtual resource management in

datacenters, in: IEEE Transactions On Cloud Computing, 2016.
[32] S. T. Maguluri, R. Srikant, L. Ying, Stochastic models of load balancing and scheduling in cloud computing clusters, in:

Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA, March 25-30, 2012, 2012, pp. 702–710.
[33] D. Hatzopoulos, I. Koutsopoulos, G. Koutitas, W. Van Heddeghem, Dynamic virtual machine allocation in cloud server

facility systems with renewable energy sources, in: Communications (ICC), 2013 IEEE International Conference on, IEEE,
2013, pp. 4217–4221.

[34] R. G. Busacker, P. J. Gowen, A procedure for determining a family of minimal cost network flow patterns, Oro technical
report 15, Operational Research Office, Johns Hopkins University, Baltimore, MD (September 1961).

35

http://lemon.cs.elte.hu/egres/open/Exact_matching_in_red-blue_bipartite_graphs
http://lemon.cs.elte.hu/egres/open/Exact_matching_in_red-blue_bipartite_graphs
https://goo.gl/Tjntfw
http://aws.amazon.com/ec2/pricing/
http://thinkgaming.com/app-sales-data/top-paid-games/

Appendix A. Model Extensions and Related Problems – Unsatisfied Requests

Our general model and problems can be extend to account for special costs (negative profits) attributed to
unsatisfied requests. We show that this problem can be reduced to the Constrained Reposition Problem
where unsatisfied requests do not incur cost, and use solutions such as SCO (described in Section 5) to solve
the problem.

Suppose that the (negative) profit of every type-i unsatisfied request in region j is U ji < 0. As explained
in the modeling section (Section 2.1), the number of type-i requests satisfied by some resource in region j
equals to min(Lji ·Bi, D

j
i) (Bi- the number of requests a type i resource can serve concurrently). Thus, the

number of the unsatisfied type-i requests in region j equals Dj
i −min(Lji ·Bi, D

j
i), and the (negative) profit

of these requests equal to U ji · (D
j
i −min(Lji ·Bi, D

j
i)).

To incorporate these unsatisfied requests in the profit function, we add these unsatisfied request costs to the
marginal local area+type function ζji (Lji , D

j
i). According to Eq. (6), this equal to:

ζji (Lji , D
j
i) = Rji · EDji [min(Lji ·Bi, D

j
i)]− C

j
i (Lji) + U ji · EDji [D

j
i −min(Lji ·Bi, D

j
i)], (A.1)

or alternatively,

ζji (Lji , D
j
i) = (Rji − U

j
i) · EDji [min(Lji ·Bi, D

j
i)]− C

j
i (Lji) + U ji · EDji [D

j
i]. (A.2)

Note that U ji · EDji [D
j
i] is a constant that does not depend on the placement L, and Rji − U

j
i > Rji ≥ 0 is

the (positive) profit of every type-i region-j request that is satisfied.

Now let P be the profit function where unsatisfied requests incur costs and have the above model parameters.
We will define a new profit function, denoted P ′, such that: 1) it does not include unsatisfied requests costs
and 2) An optimal solution for the Constrained Reposition Problem with profit function P is the same
optimal solution for the Constrained Reposition Problem with profit function P ′. In other words, we show
that Constrained Reposition Problem where the unsatisfied requests incur costs, can be reduced to the
Constrained Reposition Problem where the unsatisfied requests do not incur costs.

We define a profit function P ′ to have the same model parameters as P (i.e., the same global revenue
parameters (Ri > 0), the same number of requests a type i resource can serve concurrently Bi etc.), with
only two exceptions: 1) it does not include unsatisfied requests costs and 2) The area+type local revenue

parameter of P ′ equals to R′
j
i = Rji −U

j
i > 0. One can verify that the profit P equals to the profit P ′ plus a

constant
∑
i

∑
j U

j
i ·EDji [D

j
i], which does not depend on the placement L. Thus, the optimal solution of the

Constrained Reposition Problem, with a profit function P (where unsatisfied requests have impacts) has the
same solution as the Constrained Reposition Problem with profit function P ′ (where unsatisfied requests do
not incur costs).

Appendix B. Min-Cost flow preliminaries and the reduction of resource placements into flows
in a 4-layer min-cost flow setting

Appendix B.1. Introduction to the min-cost flow problem

We start describing the min-cost flow problem [34], which is a generalization of the notable max flow
problem (see [16]), where we considera directed graph G = (V,E) where every edge e ∈ E has integer
capacity c(e). Let x, y be two nodes in G, where x is called a source and y a sink. Every flow f defined over
the graph edges must obey two properties: 1) for every edge e we have 0 ≤ f(e) ≤ c(e), and 2) conservation
of flow, i.e., for every vertex v 6= x, y, if e1 = (v, u1), . . . en = (v, un) are edges outcoming from v, and

36

e′1 = (u′1, v), . . . e′n′ = (un′ , v) are edges incoming to v, then f(v) =
∑n
i=0 f(e) =

∑n′

i=1 f(e′i)
14. Given a

flow f , we define f(v) as the flow in node. The flow value |f | of f is the flow in the source x (and
sink y), |f | =

∑
(x,v)∈E f(x, v) =

∑
(v,y)∈E f(v, y). In addition, every edge is associates with a real-value

weight w(e) (alternatively, called cost). The weight (or cost) of a flow f with respect to weight w is
W (f, w) =

∑
e∈E f(e)w(e).

The classic min-cost flow problem with required flow |f | = k is to find a flow fopt(k) of value k that has
lowest weight among all flows of value k. This means that for every flow f ′ such that |f ′| = |fopt(k)| = k
we have W (fopt(k), w) ≤ W (f ′, w). It is well-known that if the capacities c(e) of a min-cost flow network
are integers, then its min-cost flow f has an integer value flow (that is the flow in every edge is integer); a
proof can be found in [9], Theorem 9.10.

In this article we generalized the min-cost flow problem, so that the input graph G = (V,E) can be a
multigraph, i.e., there are multiple edges between every two vertices in G.

Appendix B.2. The 4-layer graph G4

To devise the construction of G4 (Theorem 3.6 and Figure 3) we recall that the profit function P (D,L) is
composed of the sum of marginal functions ζi(D,Li) = ζi(Di, Li), ζ

j
i (D,Li) = ζji (Dj

i , L
j
i), ζ

j(Lj) (Eq. (5).
That means

P (L,D) =

m∑
i=1

k∑
j=1

ζji (Lji , D)︸ ︷︷ ︸
area & type

+

m∑
i=1

ζi(Li, D)︸ ︷︷ ︸
type

+

k∑
j=1

ζj(Lj)︸ ︷︷ ︸
area

. (B.1)

The marginal functions ζji , ζi depend on the demand D, while ζj does not depend. We denote the differ-
ential of a discrete function ζ as ∆ζ(n,D) = ζ(n + 1, D) − ζ(n,D). Also, we recall that the size of every
placement is bounded by the storage constant s, which can be as large as one wishes.

The 4-layer multigraph G4 (graph with parallel edges between vertices) is composed of a source x, region
nodes j1, j2, . . . jk, resource type nodes i1, i2 . . . im and a sink y. Between every two nodes of successive
layers we connect s edges, all with flow capacity c(e) = 1. The weight of edges between the source x and a
region node j are minus the area-j marginal function differential, i.e., (−1) ·∆ζj(0), (−1) ·∆ζj(1), . . . , (−1) ·
∆ζj(s − 1), and the edges are denoted respectively by j1, j2, . . . , js or by (x, j)1, (x, j)2, . . . , (x, j)s. The
weight of edges between region nodes j and resource type node i are minus the area-j type i marginal function
differential (−1), (−1)·∆ζji (0, D), (−1)·∆ζji (1, D), . . . , (−1)·∆ζji (s−1, D) denoted by (j, i)1, (j, i)2, . . . , (j, i)s.
The weight of edges between resource type node i and the sink y of are minus the type i marginal function
differential. Finally, we then connect the source x to the sink y with s edges of flow capacity c(e) = 1 and
weight w(e) = 0. In Figure B.11 we depict the 4-layer multigraph. We omit some edges for the sake of
presentation.

Appendix B.3. The corresponding flow

For every placement L we define its corresponding flow fL in the 4-layer graph G4 in the following way:

1) For every region j and resource type i we send through edges (j, i)1, (j, i)2, . . . (j, i)L
j
i one unit of flow.

2) For every region j we send through edges j1, j2, . . . jL
j

one unit of flow. 3) For every resource type i we
send through edges i1, i2, . . . iLi one unit of flow. 4) The flow between x and y equals to s −

∑
j L

j . Note
the required flow fL equals to the storage constant s. An example can be seen in Section 3, Figure 3.

14Note that the min-cost flow problem is sometimes defined differently with mass balance constraints as done in [9]

37

y

Area nodes Type nodes

x

Figure B.11: The 4-layer multigraph G4. We omit some dges from the graph for the sake of presentation.

Appendix C. Proof of Claim 3.7 from Section 3

Claim 3.7. Let L be a placement. Then its profit equals to a constant c minus the weight of its corresponding
flow fL i.e.,

P (D,L) = c−W (fL, w(D)), (C.1)

where c depends neither on the placement L nor the demand D, and W (f, w(D)) is the flow weight of the
flow f using the edge weights w resulting from the demand D.

Proof of Claim 3.7. The proof follows from the fact that the sum of differential weights (−1)·∆ζj(0, D), (−1)·
∆ζj(1, D), . . . , (−1) ·∆ζj(Lj − 1) forms a telescoping series. The formal proof is presented below.

Let j be a region node, and denote the flow weight between x and j as wf (x, j) =
∑
e is an edge between x and j f(e)w(e).

Since fL sends a single unit of flow through edges j1, j2, . . . jL
j

one unit of flow with differential weights
(−1) ·∆ζj(0), (−1) ·∆ζj(1), . . . , (−1) ·∆ζj(Lj − 1) then

w(x, j) =

Lji−1∑
n=0

(−1) ·∆ζj(n) =︸︷︷︸
defintion of ∆g

Lj−1∑
n=0

(ζj(n)− ζj(n+ 1)) =︸︷︷︸
telescoping series

ζj(0)− ζj(Lj),

and therefore,

ζj(Lj) = ζj(0)− w(x, j). (C.2)

Note that according to Eq. (8) ζj(0) = −Cj(0) is constant, and depends neither on the placement L nor on
the demand D.

We can similarly define for every region node j and resource type node i the flow between j and i, i.e.,
wf (j, i) and the flow between i and y, i.e., wf (i, y). We similarly imply that

ζji (Lji , D) = ζji (0, D)− wf (j, i), (C.3)

ζi(Li, D) = ζi(0, D)− wf (i, y), , (C.4)

and according to Eqs. (7)),(6)), ζi(0, D) = −Ci(0), ζji (0, D) = −Cji (0) are constants that do not depends on
the placement L nor the demand D.

38

The weight of fL equals to the sum of weights wf (x, j), wf (j, i), wf (i, y) over all region nodes j and resource

type nodes i. Also, according to Eq. B.1 the profit P (D,L) equals to the sum of ζji (Lji , D), ζi(Li, D), ζj(Lj)

over all region nodes j and resource type nodes i. If we define the constant c to be the sum of ζji (0, D), ζi(0, D), ζj(0)
then summing up Eqs. (C.2),(C.3),(C.4) over all region nodes j and resource type nodes i will result in the
required result.

Appendix D. Proof of Claim 3.8 from Section 3

Claim 3.8. There exists a placement L whose corresponding flow fL is the min-cost flow of G4 with edge
weights w(D) corresponding to demand D and with required flow |f | = s. Moreover, L is the optimal
unconstrained placement for demand D.

Proof of Claim 3.8. The correctness of the Claim stems from the follows three facts: 1) the marginal func-
tions g are concave functions (See Section 2.3). I.e., ∆g are monotonically non-increasing functions 2) if the
capacities of a min-cost flow network are integer, then its min-cost flow f has integer flow (that is the flow
on every edge is integer). The latter is a well-known theorem (the Integrality Property in [9], Theorem 9.10
). 3) Claim 3.7 proven above. Below we present the formal proof of the Claim.

First, the multigraph G4 contains integer capacities, and there is a min-cost flow fmin of required flow
|f | = s, with integer flow values. Note that every edge e 6= (x, y) in G4 has a single unit capacity c(e) = 1.
Thus, the flow fmin in each edge can be either or 0 or 1.

Let j be a region node and i be a resource type node. We denote the n-indexed edges jn, (j, i)n, in as
respectively the edge between x and j, the edge between j and i, and the edge between i and y with
respective weights of (−1) · ∆ζj(n − 1), (−1) · ∆ζji (n − 1, D), (−1) · ∆ζi(n − 1, D). The marginal convex

functions ζj , ζji , ζi are concave, and ∆ζj ,∆ζji ,∆ζi, are monotonically non-increasing functions in n. Thus,
the weights of jn, (i, j)n, in are monotonically non-decreasing in n, and a min-cost flow fmin will prefer to
send flow through edges with possible index to minimize the weight of the flow, i.e., there exists Lji , L

j , Li

such that we send flow through edges j1, j2. . . . jL
j

, (j, i)1, (j, i)2, . . . (j, i)L
j
i , i1, i2, . . . iLi (and their filler

vertices) one unit of flow, and do not send flow through the other edges. By conservation of flow we note

that Lj = fmin(j) =
∑m
i=1 fmin(i, j) =

∑m
i=1 L

j
i and Li = fmin(i) =

∑k
j=1 fmin(i, j) =

∑k
j=1 L

j
i . The flow

through edge (x, y) equals to s−
∑k
j=1 L

j . Thus, fmin is simply the associated flow of placement Lopt = (Lji).

To prove that Lopt = (Lji) is the optimal unconstrained placement, let L′ be a placement with its associated
flow fL′ . By the definition of a min-cost flow, the weight of fLopt is smaller than the flow of fL′ . By Claim 3.7,
we imply that Lopt has larger profit than L′, thus Lopt is the optimal unconstrained placement.

Appendix E. Proof of Claim 3.10 from Section 3

Claim 3.10. Let w = w(t) and w′ = w(t + 1) be the edge weights of G4 with respect to demands D(t)
and D(t+ 1) respectively. Then the difference of weights |w(e)− w′(e)| is bounded by the demand distance
d(D(t), D(t+ 1)), i.e., ∑

e∈E
|w′(e)− w′(e)| ≤ d(D(t), D(t+ 1)). (E.1)

Proof of Claim 3.10. To compute these weight values, we use the following formula to compute the partial
expectation (i.e.,EX(min(n,X))) for every positive discrete random variable X:

39

EX(min(n,X)) =

n∑
k=1

Pr(X ≥ k). (E.2)

The correctness of the equation is shown in [11] Claim 6.4.

Using Eq E.2 we can now compute the weights of G4 edges. In Section 2, we expressed the marginal profit
functions by the model parameters, which equals to

ζji (Lji , D
j
i) = Rji · EDji [min(Lji ·Bi, D

j
i)]− C

j
i (Lji)

ζi(Li, Di) = Ri · EDi [min(Li ·Bi, Di)]− Ci(Lji)
ζj(Lj) = −Cj(Lj).

(E.3)

Using Eqs. (E.3), (E.2) we observe that the edge weights of the nth edge between respectively the source x
to region node j (denoted by (x, j)n), region node j and resource type node i (denoted by (j, i)n), resource
type node i to sink y (denoted by (i, y)n) are equal to

−∆ζji (n− 1, D) = ∆Cji (n− 1)−Rji ·
n·Bi∑

k=(n−1)·Bi+1

Pr(Dj
i ≥ k), (E.4)

−∆ζi(n− 1, D) = ∆Ci(n− 1)−Ri ·
n·Bi∑

k=(n−1)·Bi+1

Pr(Di ≥ k) (E.5)

−∆ζj(n− 1) = ∆Cj(n− 1). (E.6)

Let w = w(t) and w′ = w(t + 1) be the edge weights of the same nth edge in G4 with respect to demand
D(t) and D(t+ 1). Then the difference of weights |w(e)− w′(e)| on the nth edge equals to

|w(e)− w′(e)| =


Rji · |

∑n·Bi
k=(n−1)·Bi+1 Pr(Dj

i (t) ≥ k)− Pr(Dj
i (t+ 1) ≥ k)| e = (i, j)n,

Ri · |
∑n·Bi
k=(n−1)·Bi+1 Pr(Di(t) ≥ k)− Pr(Di(t+ 1) ≥ k)| e = in,

0 Otherwise.

(E.7)

Let j be a region node and i a resource type node. Then summing the weight difference over all edges (j, i)n

is

∞∑
n=1

|w((i, j)n)− w′((i, j)n)| ≤︸︷︷︸
using triangular inequality

Rji ·
∞∑
k=1

|Pr(Dj
i (t) ≥ k)− Pr(Dj

i (t+ 1) ≥ k)|

=︸︷︷︸
Pr(X≥n)=1−Pr(X≤n−1)

Rji ·
∞∑
k=0

|Pr(Dj
i (t) ≤ k)− Pr(Dj

i (t+ 1) ≤ k)| = Rji · d(Dj
i (t), D

j
i (t+ 1)). (E.8)

Similarly, the sum of weight difference over all edges in is

∞∑
n=1

|w(in)− w′(in)| ≤︸︷︷︸
using triangular inequality

Ri ·
∞∑
k=1

|Pr(Di(t) ≥ k)− Pr(Di(t+ 1) ≥ k)|

=︸︷︷︸
Pr(X≥n)=1−Pr(X≤n−1)

Ri ·
∞∑
k=0

|Pr(Di(t) ≤ k)− Pr(Di(t) ≤ k)| = Ri · d(Di(t), Di(t+ 1)). (E.9)

40

If we sum up Eqs. (E.8), (E.9) over all regions j and resource types i then we have

∑
e∈E
|w(e)− w′(e)| =︸︷︷︸

Eq. (E.7)

m∑
i=1

s∑
n=1

|w(in)− w′(in)|+
k∑
j=1

m∑
i=1

s∑
n=1

|w((j, i)n)− w′((j, i)n)|

≤︸︷︷︸
Eqs. (E.8), (E.9)

m∑
i=1

Ri · d(Di(t), Di(t+ 1)) +

k∑
j=1

m∑
i=1

Rji · d(Dj
i (t), D

j
i (t+ 1)) =︸︷︷︸

Definition of demand distance

d(D(t), D(t+ 1)), (E.10)

as required.

Appendix F. Proof of Theorem 4.4 (Hardness of the Fair Christmas Game Problem)

In this section we prove Theorem 4.4 from Section 4, using the Exact Cycle Sum problem.

Definition 7. Let G = (V,E) be a directed graph. A set of cycles T = {C1, . . . , Cn} in G is called a set of
disjoint-vertex cycles if no vertex is shared by different cycles.

The Exact Cycle Sum problem is discussed in [12] and defined as followed:

Exact Cycle Sum
Input: A parameter k, a directed graph G.

Problem: Is there a set T = {C1, C2, . . . Cn} of disjoint-vertex cycles in G, which contains exactly k
edges?

We show that the Fair Christmas Game Problems is as hard as the Exact Cycle Sum (in the sense that if
one solves the former, one solves the latter as well), i.e., we will prove Theorem 4.4 from Section 4.
Theorem 4.4. There is a polynomial reduction from the Cycle Sum Problem to the Fair Christmas Game
Problem.

Proof of Theorem 4.4. Let k, G = (V,E) be an instance of the Exact Cycle Sum problem. We construct a
corresponding Christmas Game as follow: For every vertex v ∈ V we add two players vin, vout to our game.
The friend list of player vin is only vout, and the friend list of player vout are players uin where (v, u) ∈ E.
We will prove that there is a set T of disjoint-vertex cycles containing exactly k edges, iff there is a Fair
Christmas Game with 2k gifts sent.

Suppose G has a disjoint-vertex cycle set T = {C1, C2, . . . Cn}. We denote the union of these cycles by
G′ =

⋃
i Ci = (V ′, E′). We define a Fair Christmas Game where player vin gives a gift to vout iff v ∈ V ′

and player vout gives a gift to player uin iff (v, u) ∈ E′. The game is fair, as every player vin, vout sends and
receives one gift if v ∈ V ′; Otherwise vin, vout sends and receives zero gifts.

We define a game cycle Cgame = (u1, u2, . . . um, u1) if player ui sends a gift to player ui+1 and player um

sends a gift to player u1. Note that a cycle Ci = (v1, v2, . . . , vm, v1) with m edges is corresponding to a
game cycle with 2m gifts of the form Cgame = (v1

in, v
1
out, v

2
in, v

2
out, . . . , v

m
in, v

m
out, v

1
in). Thus, if S contains k

edges, then its corresponding Fair Christmas Game sends exactly 2k gifts.

Suppose there is a Fair Christmas Game with 2k gifts sent. We define Vgame to be the set of players
sending or receiving one or more gifts. For every player vin ∈ Vgame, we can construct by induction a
unique game cycle of the form Cgame = (v1

in, v
1
out, v

2
in, v

2
out, . . . , v

m
in, v

m
out, v

1
in) where 2m gifts are sent and it

contains player vin. Such game cycle is corresponding to a cycle C = (v1.v2, . . .) in G, with m edges. Thus,

41

Cgame1 , Cgame2 , . . . Cgamen are the game cycles of the fair game, where 2k gifts are sent. Their corresponding
cycles are C1, C2, . . . Cn with a total number of k edges. Note that C1, C2, . . . Cn have disjoint vertices, since
by the construction the game cycles are unique to every player.

Appendix G. Full version of Claim 5.5, and its proof

Lemma Appendix G.1 (Extended version of Lemma 5.5). Let o be an extended chain operation O(j1 →
j2 → . . . → jn). Suppose that between jk to jk+1 it moves a resource of type ik (k = 1, 2 . . . n − 1). Then
the profitability of o over L can be one of the following formats, according to the class of the operation o:

1. Class 1: If o neither adds a resource to j1 nor removes from jn then

∆(o, L) = ∆+(j1) +

n−1∑
k=1

∆ik(jk → jk+1) + ∆−(jn)

2. Class 2: If o adds a resource of type i0 to j1 but does not remove from jn then

∆(o, L) = ∆+
i0

(j1) +

n−1∑
k=1

∆ik(jk → jk+1) + ∆−(jn).

3. Class 3: If o does not add a resource to j1 but removes a resource of type in from jn then

∆(o, L) = ∆+(j1) +

n−1∑
k=1

∆ik(jk → jk+1) + ∆−in(jn).

4. Class 4: If o adds a resource of type i0 to region j1 and removes a resource of type in 6= i0 from jn
then

∆(o, L) = ∆+
i0

(j1) +

n−1∑
k=1

∆ik(jk → jk+1) + ∆−in(jn).

5. Class 5: If o adds a resource of type i0 to region j1 and removes a resource of type in = i0 from jn
then

∆(o, L) =

n−1∑
k=1

∆ik(jk → jk+1) + ∆i0(jn → j1).

where,

∆i(j1 → j2) = ∆gj2i (Lj2i)−∆gj1i (Lj1i − 1) (G.1)

∆+(j) = −∆gj(Lj − 1) (G.2)

∆+
i (j) = ∆gji (L

j
i) + ∆gi(Li) (G.3)

∆−(j) = ∆gj(Lj) (G.4)

∆−i (j) = −∆gji (L
j
i − 1)−∆gi(Li − 1). (G.5)

Proof. Let L̂ = o(L). Then by the definition of profitability and Eq. (29), the profitability of o over L equals
to the sum of gji (L̂

j
i)− g

j
i (L

j
i)︸ ︷︷ ︸

area & type

, gi(L̂i)− gi(Li)︸ ︷︷ ︸
type

and gj(L̂j)− gj(Lj)︸ ︷︷ ︸
area

over all regions j and resource types i.

42

The proof is similar to the one pointed out in original lemma, (Lemma 5.5). If the operation adds a type i
resources in region j, i.e., L̂ji = Lji + 1, then it contributes to the area & type functions gji (L̂

j
i)− g

j
i (L

j
i) =

gji (L
j
i + 1)− gji (L

j
i) =︸︷︷︸

Definition of ∆gji

∆gji (L
j
i). If the operation removes a type i resource from region j, i.e., L̂ji = Lji − 1,

then it contributes to the area & type functions gji (L̂
j
i)− g

j
i (L

j
i) = gji (L

j
i − 1)− gji (L

j
i) =︸︷︷︸

Definition of ∆gji

−∆gji (L
j
i − 1). If

the operation does not change the number of type i resources in region j – then of course gji (L̂
j
i)−g

j
i (L

j
i) = 0

and it does not contribute to the profitability.

In a similar way, if the adds a resource to or removes a resource from region j it contributes respectively
to the area functions ∆gj(Lj),−∆gj(Lj − 1), and if the operation adds or removes a resource of type i it
contributes respectively to the area functions ∆gj(Lj),−∆gj(Lj − 1).

When the operation o moves a resource of type i from region j1 to region j2 then operation o removes a type
i resource from region j1 and adds a resource to region j2. Thus, each move operation contributes to the
area & type functions ∆gj2i (Lj2i)−∆gj1i (Lj1i − 1) = ∆i(j1 → j2). Now, in all the above classes the operation
moves a type ik resource from region jk to region jk+1, and thus contributes to the area & type functions∑n
k=1 ∆ik(jk → jk+1).

Note that if o is a fifth class operation, it adds a resource of type i0 to region j1 and removes a resource of
type i0 from jn. This is equivalent to moving type i0 resource from region jn to region j1. Thus, in this
case, the operation contributes ∆i0(jn → j1).

For the first and third class operations o does not add a resource to j1 and thus the number of resource in j1
is reduced, i.e., the operation o contributes to the profitability ∆+(j1) = −∆gj1(Lj1 − 1). For operations of
the second, fourth and fifth classes the number of resources in region j1 does not change. These operations
increase the number of type i0 resources in region j1, i.e., they contribute to the area & type profitability
function ∆gj1i0 (Lj1i0) (note that in the fifth class operations this term appears as part of ∆i0(jn → j1) =

∆gj1i0 (Lj1i0)−∆gjni0 (Ljni0 − 1)). In operation of the second and fourth classes the number of type i0 resources
increases by one, and therefore contributes to the profitability the sum ∆gi1(Li1). For operations of the fifth
class the number of type i0 = in resources remains the same and does not contribute to the profitability.

In the first and the second class operations o does not remove a resource from jn and thus the number
of resources in j1 is increased, i.e., the operation o contributes to the profitability ∆−(jn) = ∆gj1(Ljn).
In operations of other classes, the number of resources in region jn does not change. These operations
decrease the number of type in resources in region jn, i.e., they contribute to the area & type profitability
function −∆gjnin (Ljnin − 1). Note that in fifth class operations this term appears as part of ∆i0(jn → j1) =

∆gj1i0 (Lj1i0)−∆gjni0 (Ljni0 − 1), where in = i0). In the third and fourth class operations the number of type in
resources is reduced by one (For the fifth Class operation the number of type i0 = in resources remains the
same), and therefore contributes to the sum −∆gin(Lin − 1).

Finally, the operation o does not change the number of type i resources in region j where (i, j) 6= (ik, jk), (ik, jk−1),
and they do not contribute to the profitability. Also the number of type i 6= i0, in resources and the number
of resources in region j 6= j1, j2 do not changed, and they do not contribute to the profitability.

Appendix H. The full algorithm to find the shortest profitable operation

The algorithm finds the shortest profitable operation for every class of extended chain operation, as seen in
Lemma 5.5. Then, the algorithm will compare the different shortest profitable operations across the different
classes and will choose the shortest profitable operation among them. The implementation of the algorithm
in each class is similar, with slight differences. We will define algorithm Ai as the algorithm that finds the
shortest profitable operation in class i.

43

All these algorithms are two-stage algorithms: at first stage they create a graph G, and in the second stage
they run a variation of shortest path algorithm to find the shortest profitable operation.

Given the placement L, in the first stage all the algorithms create a complete digraph of region vertices
1, 2 . . . , k. Our goal is to create a graph G that represents extended chain operation E(j1 → j2 → . . .→ jn)
such that between regions jk and jk+1 the operation moves the best resource of type i(jk → jk+1) between
them. More formally, all algorithms define over the edges (j1, j2) weights w(j1 → j2) = (−1) ·maxi ∆i(j1 →
j2), i.e., the best move between region j1 and j2 and save the resource type that maximizes this value, i.e.,
i(j1 → j2) = arg maxi ∆i(j1 → j2) (i.e., the resource type maximizes Eq. (31)).

In addition, algorithms A1, A2, A3, A4 add two nodes: a source node x and a sink node y, and connect for
every region j the edges (x, j) and (j, y). The weight of edges (x, j) in A1 and A3 (for the first and third
class operations) are w+(j) = (−1) ·∆+(j). Algorithms A2 and A4 are finding the best resource of type i0
to add to region j1, and therefore they set w+(j) = (−1) ·maxi ∆+

i (j) and save i0(j) = arg max ∆+
i (j). The

weight of edges (j, y) in A1 and A2 are , w−(j) = (−1) ·∆−(j). Algorithms A3 and A4 are finding the best
resource of type in to remove from region jn and therefore they set w−(j) = (−1) ·maxi ∆−i (j), and save
in(j) = arg max ∆−i (j).

In the second stage all algorithms use the Bellman-Ford algorithm [16], which computes in the ith iteration
the shortest path between two vertices s and t that uses at most i edges. For algorithms A1, A2 . . . An it
finds the shortest path between s = x and t = y. Algorithm A5 runs simultaneously over all region nodes
j and finds in the ith iteration the shortest path between s = j to itself (t = j) that uses at most i edges.
These algorithms stop in the first iteration imin where the shortest path with imin edges has negative weight.
When an algorithm finds that the shortest path is (x, j1, j2, . . . , jimin−2, y) (or (j1, j2, . . . , jimin , j1) in the
case of A5) then it returns the chain operation O(j1 → j2, . . .→ jimin−2) that moves from region jk to jk+1

a resource of type i(jk → jk+1). According to the algorithm class, the operation can add a resource of type
i0(j1) (Classes 2, 4) to region j1 and\or remove resource of type in(jn) (Classes 3, 4) from region jn.

According to the next claim, these algorithm must find the shortest profitable operation in their respected
classes:

Claim Appendix H.1. Algorithm Ai find a shortest profitable operation over all extended chain operations
of Class i (i = 1, 2, 3, 4, 5).

Proof. The proof is identical to the proof in Claim 5.6.

The complexity of A1 . . . , A4 in the first stage is O(k2 ·m) where k is the number of regions and m is the
number of resource types. This is because computing w(j1 → j2) takes O(m) steps. Using Bellman-Ford on
a graph G = (V,E) takes at most O(V E). Since our graph contains O(k) vertices and O(k2) edges - then
the running time of the second stage is O(k3). Thus the complexity of A1, A2, . . . A4 is O(k2(k+m)) steps.
Algorithm A5 in the second stage runs the Bellman-Ford algorithm simultaneously for every region node j
i.e., its time complexity in the second stage equals to O(k4) and in both stages equals to O(k2(k2 + m)),
which is the time complexity of our full algorithm.

Appendix I. Description of residual graphs and the Augmenting Cycle Theorem for multi-
graphs

In Theorem 5.4 we use properties over the residual graph, which is defined next:

44

Definition 8. Let G = (V,E) be a (multi)-graph, where a weight function w and an integer capacity
function c are defined over the graph edges E, and let f be a flow. We denote the reverse edges in G by
Ê = {(u, v)|(v, u) ∈ E}. The residual (multi)-graph Gf = (V,Ef) is a graph constructed similarly to the
residual graph in the max-flow problem. On the residual graph edges one defines weight wf and capacity cf ,
and is constructed from a graph G and from flow f by the following steps): 1) Add to Gf edges from G,
such that edge e ∈ E will have weight wf (e) = w(e) and capacity of cf (e) = c(e)− f(e). 2) Add the reverse

edges of G, Ê. That means, if (v, v′) ∈ E, then add edge (v′, v) ∈ Ê to Gf with weight wf (v′, v) = −w(v, v′)
and capacity of cf (v′, v) = f(v, v′). Note that for every edge e in Gf we have c(e) ≥ 0. 3) Every edge e in
Gf with residual capacity cf (e) = 0 are removed from the graph.

Most of the min-cost flow algorithms are based on augmenting flow through a path or a negative cycle in a
residual graph Gf . When a min-cost flow algorithm augment ∆ units of flow through a subset of edges E′

from Gf , it affects the flow f in the following way:

• If e ∈ E′ is an edge in the original graph G, then we set f(e)← f(e) + ∆.

• If e = (u, v) ∈ E′ is a reverse edge in G, then we set f(e)← f(e)−∆.

According to the new updated flow, one can update the graph Gf with a new residual weight function wf
and new capacity cf . We define the residual weight wf of cycle C as the sum of the cycle edge weights, i.e.,
wf (C) =

∑
e∈C wf (e).

The usefulness of augmenting flow through cycles is described in the Augmenting Cycle Theorem, a well
known theorem which is presented below.

Theorem Appendix I.1 (Augmenting Cycle Theorem for graphs). Let f and f ′ be two flows defined over
a graph G with edge weights w and integer capacity function c. Suppose that f and f ′ have the same flow
value |f | = |f ′|. Then there exist cycles C1, C2, . . . Cm in the residual graph Gf such that 1) f ′ equals to
f plus augmenting a positive integer ∆i of flow units through all Ci, i = 1, 2, . . . ,m. 2) The weight of f ′,
equals to the weight of f plus the residual weight of the flowing cycles Ci i.e.,

W (f ′, w) = W (f, w) +

m∑
i=1

wf (Ci)∆i (I.1)

3) The union of all these cycles
⋃m
i=1 Ci is unique.

Proof of the Augmenting Cycle Theorem for graphs. A proof can be found in many places, such as [9] 15.

Therefore, many min-cost flow algorithms are based on augmenting flow iteratively through negative cycles
in the residual graph Gf , until a min-cost flow is reached.

Note that the theorem was proven assuming G is a graph but not a multigraph. Thus, it cannot be applied
over the 4-layer multigraph G4. However, we extend that theorem and show that the theorem applies to a
multigraph as well.

Theorem Appendix I.2 (Augmenting Cycle Theorem for multigraphs). Let f and f ′ be two flows defined
over a multigraph G with edge weights w and capacity function c. Suppose that f and f ′ have the same flow
value |f | = |f ′|. Then there exists cycles C1, C2, . . . Cm in the residual graph Gf such that 1) f ′ equals to

15Note that [9] is using slightly different version than ours.

45

f plus augmenting a positive integer ∆i of flow units through all Ci, i = 1, 2, . . . ,m. 2) The weight of f ′,
equals to the weight of f plus the residual weight of the flowing cycles Ci i.e.,

W (f ′, w) = W (f, w) +

m∑
i=1

wf (Ci)cf (Ci). (I.2)

3) The union of all these cycles
⋃m
i=1 Ci is unique.

Proof of the Augmenting Cycle Theorem for multigraphs. Given a multigraph G we expand G into Ĝ such
that for every edge e in G that connects vertex v1 to v2 we add a new vertex ve; then we connect v1 to ve
and ve to v2. We set the weight of the edge (v1, ve) will be equal to the weight of the edge e in G, while the
weight of the edge (ve, v2) to be set to zero. The capacity of both edges (v1, ve), (ve, v1) in Ĝ equals to the
capacity of the edge e.

Every flow in the multigraph G has a corresponding flow in G, and vice versa. Simply, if a flow f in G
goes through edge e, then the appropriate flow f̂ in Ĝ will go through edges (v1, ve) and (ve, v2) in Ĝ. The

weights of both flows equal to each other (W (f, w) = W (f̂ , ŵ)). Similarly, for every cycle C in G there is
a cycle Ĉ in Ĝ and vice versa, with the same weight and residual capacity. Now let f and f ′ be two flows,
with corresponding flow f̂ and f̂ ′ in G′. Then, according the Augmenting Cycle Theorem for graphs, there
exist cycles Ĉi in Ĝf̂ corresponding to cycles Ci in G, where the above three conditions are satisfied with

respect to flow f̂ ′ and f̂ . One can check that the cycles Ci satisfy all three conditions for the flows f and
f ′.

Appendix J. Proof of Lemma 5.7 from Section 5

Lemma 5.7. For every operation o and placement L there exists a sub-operation of o, to be denoted by
o∗(o, L) ⊆ o that possesses the following two properties: 1) There is a lowest weight cycle C such that
augmenting flow through C is corresponding to o∗(o, L), i.e., it changes the flow fL to fo∗(o,L)(L), and 2)
operation o∗(o, L) is an extended chain operation or a composition of two operation-disjoint extended chain
operations.

Proof of Lemma 5.7. To prove Lemma 5.7 we use Observation Appendix J.1 (given below) that charac-
terizes the structure of the residual operation multigraph G(o, L). The observation will imply that the
definition of operation o∗(o, L) is well-defined. We then show that the operation o∗(o, L) has a lowest weight
cycle representation (Claim Appendix J.2), and then prove that o∗(o, L) is an extended chain operation
(Claim Appendix J.3).

To define o∗(o, L) we use the following observation that characterizes the edges of the residual operation
multigraph G(o, L).

Observation Appendix J.1. The residual operation multigraph G(o, L) should contain only the following
edges from the 4-layer residual multigraph G4

fL
:

• For every region node j, if Lj < o(L)
j

then G(o, L) contains original edges (x, j)L
j+1, (x, j)L

j+2, . . . , (x, j)o(L)j

of the residual graph G4
fL

i.e., with respective weights −∆ζj(Lj),−∆ζj(Lj + 1), . . . ,−∆ζj(o(L)
j − 1).

If Lj > o(L)
j

then G(o, L) contains reverse edges (j, x)L
j

, (j, x)L
j−1, . . . , (j, x)o(L)j+1 of G4

fL
with re-

spective weights ∆ζj(Lj−1),∆ζj(Lj−2), . . . ,∆ζj(o(L)
j
). If Lj = o(L)

j
then G(o, L) does not contain

any original edge or reverse edge between x and j.

46

• For every region node j and resource type node i, if Lji < o(L)
j
i then G(o, L) contains original edges

(j, i)L
j
i+1, (j, i)L

j
i+2, . . . , (j, i)o(L)ji of the residual graph G4

fL
i.e., with respective weights −∆ζji (Lji , D),−∆ζji (Lji+

1, D), . . . ,−∆j
i (o(L)

j
i−1, D). If Lji > o(L)

j
i then G(o, L) contains reverse edges (i, j)L

j
i , (i, j)L

j
i−1, . . . , (i, j)o(L)ji+1

of G4
fL

with respective weights ∆ζji (Lji − 1, D),∆ζji (Lji − 2, D), . . . ,∆ζji (o(L)
j
i , D). If Lji = o(L)

j
i then

G(o, L) does not contain any original edge or reverse edge between i and j.

• For every resource type node i, if Li < o(L)i then G(o, L) contains original edges (i, y)Li+1, (i, y)Li+2, . . . , (i, y)o(L)i

of the residual graph G4
fL

. i.e., with respective weights −∆ζi(L
j
i , D),−∆ζi(Li+1, D), . . . ,−∆i(o(L)i, D)

If Li > o(L)i then G(o, L) contains reverse edges (y, i)Li , (y, i)Li−1, . . . , (y, i)o(L)i+1 of G4
fL

with re-

spective weights ∆ζi(Li−1, D),∆ζi(L
j
i −2, D), . . . ,∆ζi(o(L)i, D). If Li = o(L)i then G(o, L) does not

contain any original edge or reverse edge between i and y.

• We denote |L| as the number of resources in a placement L. If s− |L| < s− |o(L)| (i.e., |o(L)| ≥ |L|)
then G(o, L) contains edges (x, y)s−|L|+1, (x, y)s−|L|+2, . . . , (x, y)s−|o(L)| of the residual graph G4

fL
. If

s − |L| > s − |o(L)| then G(o, L) contains reverse edges (y, x)L
j
i , (y, x)L

j
i−1, . . . , (y, x)o(L)ji+1 of graph

G4
fL

. All reverse and original edges between x and y have zero weight. If s − |L| = s − |o(L)| then
G(o, L) does not contain any edge or reverse edge between x and y.

Proof of Observation Appendix J.1. Suppose that we send a single unit of flow through the edges of G(o, L).
Then the corresponding flow of L, fL, was changed to the corresponding flow of o(L), fo(L). We define the
edges described in the observation by G′. We will show that augmenting the flow through G′ we change
the flow fL to fo(L). By the definition of the residual operation graph G(o, L) augmenting the flow through
G(o, L) changes the flow fL to fo(L). Since there is a single subgraph that can change the flow fL to fo(L)

(see the Augmenting Cycle Theorem Appendix I.2) we get that G′ = G(o, L).

Let a be a region node. According to its definition, the corresponding flow of L augments one unit of flow
through edges (x, a)1, (x, a)2, . . . , (x, a)L

a

. By the following cases, we show that after augmenting the flow
through G′ the corresponding flow of L changes so that the flow in edges between source x and region node
a are similar to the flow of these edges in the corresponding flow of o(L):

1. If La < o(L)
a

then augmenting one unit of flow throughG′, i.e., through original edges (x, a)L
a+1, (x, a)L

a+2, . . . , (x, a)o(L)a ,
will change the flow fL so that edges (x, a)1, (x, a)2, . . ., (x, a)o(L)a will contain one unit of flow, similar
to the corresponding flow of o(L).

2. If La > o(L)
a

then augmenting one unit of flow throughG′, i.e., through reverse edges (a, x)L
a

, (a, x)L
a−1, . . . , (x, a)o(L)a−1

will cancel the flow in edges (x, a)L
a

, (x, a)L
a−1, . . . , (x, j)o(L)a+1. That means the flow changes so it

contains one unit of flow through edges (x, a)1, (x, a)2, . . . , (x, a)o(L)a , similar to the corresponding flow
of o(L).

3. If La = o(L)
a

then augmenting one unit of flow through G′, does not change the flow of edges between
source x and a, and the flow still contains one unit of flow through edges (x, a)1, (x, a)2, . . . , (x, a)o(L)a ,
similar to the corresponding flow of o(L).

We can similarly prove that augmenting the flow through other edges in G′ will change the corresponding
flow of L to the flow of o(L).

Now according to Observation Appendix J.1 for every region node j and resource type node i the residual
operation multigraph G(o, L) (and therefore every lowest weight cycle C) cannot contain both original edges
from j to i and reverse edges from j to i. This implies a well-defined definition to the operation o∗(o, L).

Suppose that C is a lowest weight cycle in the residual operation multigraph G(o, L). We define operation
o∗(o, L) such that for every region node j and resource type node i it does the following:

• If C contains original edges from j to i, then o∗(o, L) adds a type i resource to region j.

47

• If C contains reverse edges from i to j, then o∗(o, L) removes a type i resource from region j.

• If C does not contains the edges between i and j, then o∗(o, L) will not change the number of type i
resources from region j.

Now we will show that there is a lowest weight cycle C ′ that represents o∗(o, L) by the following claim:

Claim Appendix J.2. There is a lowest weight cycle C ′ (that is a simple cycle with the lowest weight in
G(o, L)) which represents its corresponding operation o∗(o, L), i.e., augmenting flow through C ′ changes the
placement L to o∗(o, L)(L).

Proof of Claim Appendix J.2. Let C be the lowest weight cycle that we used to create o∗(o, L). We observe
that if C connects v1 to v2 then it must use a single edge with the lowest weight to connect between the
vertices (it can use only one edge as C is simple). Suppose C contains an original edge between vertices j
and i, denoted by j → i. According to Observation Appendix J.1, the residual operation graph G(o, L) (and

thus C) should contains edges (j, i)L
j
i+1, (j, i)L

j
i+2, . . . , (j, i)o(L)ji of edge weights −∆ζji (Lji , D),−∆ζji (Lji +

1, D), . . . ,−∆j
i (o(L)

j
i −1, D). Since the marginal profit functions are concave (i.e., ∆ζ(n,D) ≥ ∆ζ(n+1, D)

for every n) then we can take a lowest weight cycle C ′ that contains edge (j, i)L
j
i+1 = (j, i)L

j
i+1. In a similar

way, we can assume that if C ′ contains either x → y, x → j, i → y then it can be assumed respectively
that it uses edges (x, y)s−|L|+1, (x, j)L

j+1, (i, y)Li+1. These are exactly the edges of the residual operation
multigraph of o∗(o, L), G(o∗(o, L), L) according to Observation Appendix J.1, for the original edges.

If C contains a reverse edge i → j then according to Observation Appendix J.1, the residual operation

graph G(o, L) (and thus C) contains edges (i, j)L
j
i , (i, j)L

j
i−1, . . . , (j, i)o(L)ji+1 of edge weights ∆ζji (Lji −

1, D),∆ζji (Lji − 2, D), . . . ,∆j
i (o(L)

j
i , D). Since the marginal profit functions are concave then we can take

a lowest weight cycle C ′ that contains edge (i, j)L
j
i , and we can assume the cycle uses that edge. In a

similar way, we show that if C ′ uses either y → x, j tox, y → i then it can be assumed respectively that it
uses edges (y, x)s−|L|, (j, x)L

j

, (y, i)Li . These are exactly the edges of the residual operation multigraph of
o∗(o, L), G(o∗(o, L), L) according to Observation Appendix J.1 for the reverse edges. Thus, we proved that
G(o∗(o, L), L) = C ′, and that augmenting the flow through C ′ changes the placement L to o∗(o, L)(L).

Now in order to complete Lemma 5.7 we show the following claim:

Claim Appendix J.3. The operation o∗(o, L) is an extended chain operation, or a composition of two
disjoint extended chains.

Proof of Claim Appendix J.3. Let C ′ be a lowest weight cycle C ′ (among the simple cycles in G(o, L))
corresponding to o∗(o, L). We prove this claim based on the structure of G(o, L) and based on the fact that
C ′ is a simple cycle

First C ′ should contain at least one region node j. Otherwise, C ′ must contain only the sink x, the source y
and type nodes i. The cycle C ′ cannot be a cycle of length 2, as it is a subgraph of residual operation graph
G(o, L), which cannot contain such cycle (According to Observation Appendix J.1), and if C ′’ is a cycle of
length 3 or more it must contain a vertex twice and thus it is not a simple cycle - A contradiction. We can
prove similarly that C ′ should contain at least one resource node i.

Now if C ′ contains an original edge from a region node j to a resource type node i, then the residual
operation multigraph G(o, L) contains only original edge between j to i; then by its definition, o∗(o, L) adds

48

a type i resource to region j. If C ′ contains a reverse edge from a resource type node i to a region node
j then o∗(o, L) removes a type i resource from region j. Thus, if C ′ contains a path jk → ik → jk+1 that
means the operation moves resource of type ik from jk+1 to jk.

We will now show that o∗(o, L) can be one of six classes of operations, according to the format of the cycle
C ′. For these classes we define j1, j2 . . . , jn to be region nodes and i0, i1, j2 . . . , in the resource type nodes,
and v1 → v2 is an edge between v1 to v2.

1. First class cycle: A cycle that only includes the source x but not the sink y must be of the format
j1 → i1 → j2 → i2, . . . ,→ jn → x → j1. Since C contains x but not y there exists a region j1 such
that x → j1 is included in the cycle, and there exists jn such that j1 → x is included in the cycle.
Then C should contain a path between j1 and jn that does not use x (as C is simple) and does not
uses y. Therefore, the format of the cycle is j1 → i1 → j2 → i2, . . . ,→ jn → x→ j1.
If C ′ is a first class cycle, then o∗(o, L) is an extended chain operation that moves resource of type
ik from region jk+1 to region jk (i.e., E(jn → jn−1 → . . . j1)), and neither adds a resource to jn nor
removes from j1.

2. Second class cycle : A cycle that includes the source x, the sink y and goes through the reverse edge
(y, x) is of the format j1 → i1 → j2 → i2, . . . ,→ jn → in → y → x→ j1. In such case, we define j1 as
the region such that x → j1 is included in the cycle, and in as the resource type node that in → y is
in the graph. There must be a path between j1 and in, that does not use the sink y or the source x,
and thus the format of the cycle is j1 → i1 → j2 → i2, . . . ,→ jn → in → y → x→ j1.
If C ′ is a second class cycle, then o∗(o, L) is an extended chain operation that moves a resource of
type ik from region jk+1 to region jk (i.e., E(jn → jn−1 → . . . j1)), adds a resource of type in to jn
but does removes a resource from j1.

3. Third class cycle: A cycle that includes the source x, the sink y, and goes through the original edge
(x, y) is of the format j1 → i1 → j2 → i2, . . . ,→ jn → x → y → i0 → j1. This is similar to the proof
of second class cycles.
If C ′ is a third class cycle, then o∗(o, L) is an extended chain operation that moves a resource of type
ik from region jk+1 to region jk (i.e., E(jn → jn−1 → . . . j1)), does not add a resource to jn but
removes a resource of type i0 from j1.

4. Forth class cycle: A cycle that does not includes x, but includes the sink y is of the format j1 →
i1 → j2 → i2, . . . ,→ jn → in → y → i0 → j1. This proof is similar to the proof of first class cycle.
If C ′ is a fourth class cycle, then o∗(o, L) is an extended chain operation that moves a resource of type
ik from region jk+1 to region jk (i.e., E(jn → jn−1 → . . . j1)), adds a resource of type in to jn, and
removes a resource of type i0 6= in from j1.

5. Fifth class cycle: A cycle that neither includes x nor y is of the format j1 → i1 → j2 → i2, . . . ,→
jn → in → j1. The proof can be shown similar to the previous classes.
If C ′ is a fifth class cycle, then o∗(o, L) is an extended chain operation that moves a resource of type
ik from region jk+1 to region jk (i.e., E(jn → jn−1 → . . . j1)), adds a resource of type in to jn, and
removes a resource of type i0 = in from j1.

6. Sixth Class cycle: A cycle that includes the source x and sink y but does not include the edge
(x, y) or its reverse edge (y, x) is composed from two disjoint paths: One path from x to y i.e.,
P1 = x→ j1 → i1 → j2 → i2, . . . ,→ jn → in → y and the other path from y to x, i.e., P2 = y → i′0 →
j′1 . . . ,→ j′n′ → x. The resource type nodes i′0 in are defined such that in → y and y → i′0 are included
in the cycle, and the region nodes j1, j′n′ are defined such that j′n → x and x→ i1 are included in the
cycle. There must be a path between j1 and in, and a path between i′0 and jn′ that does not use the
sink y or the source x, and thus of the above format.
If C ′ is a sixth class cycle, then o∗(o, L) is composed from two disjoint extended chain operations:
The first extended chain operation moves resource of type ik from region jk+1 to region jk−1 (i.e.,
E(jn → jn−1 → . . . j1)), and adds a resource of type in to region jn. The second extended chain
operation moves resource of type i′k from region j′k+1 to region j′k (i.e., E(j′n → j′n−1 → . . . j′1)), and
removes a resource of type i′0 from region j′0. Note that the operations are disjointed, as the cycle C ′

is a simple cycle

49

Thus the proof of Lemma 5.7 is completed.

Appendix K. Cost details for Performance Evaluation

Revenue constants parameters Rloci Rgloi
Windows $ 0.5 $ 2
Linux $ 0.1 $ 1.9

Table K.1: Service costs used in simulations

On demand costs (pji) USA Europe Asia
Windows $ 0.14 $ 0.133 $ 0.161
Linux $ 0.137 $ 0.137 $ 0.158

Table K.2: Amazon EC2 price system

50

	Introduction
	The model and the problem
	The model
	Problem formulation
	Assumptions of the marginal profit functions

	Fundamental Sensitivity Properties of Resource Reposition
	Properties of L1-CDF distance
	Sensitivity of repositions to demand fluctuations
	 Sensitivity of the profit to demand distribution fluctuations

	Hardness of the Constrained Reposition problem
	The Fair Christmas Game Problem and its reduction to the Constrained Reposition Problem
	Hardness of the Constrained Reposition Problem

	The Shortest Cycle Operation (SCO) algorithm
	Description of SCO
	Key properties of the SCO algorithm
	Implementation of the SCO algorithm - outline
	Shortest profitable operation is an extended chain operation
	Profitability structure of an extended chains
	The algorithm for finding a shortest profitable operation
	Every shortest profitable operation is an extended chain - proof of Theorem 5.4

	An Online Hybrid Multi-Period Algorithm (Hybrid)
	Model extensions
	The Unconstrained Placement Problem with Reposition Costs
	The parameterized Unconstrained problem – Can it be used to solve the constrained reposition problem
	Modeling Extensions of unsatisfied requests

	Performance evaluation of the dynamic algorithms
	Parameter Settings
	Performance of the dynamic algorithms over time varying predicted demands
	Performance Evaluation - conclusions
	Comparing the performance of SCO to the parametrized unconstrained solution

	Related Work
	Concluding Remarks
	Model Extensions and Related Problems – Unsatisfied Requests
	Min-Cost flow preliminaries and the reduction of resource placements into flows in a 4-layer min-cost flow setting
	Introduction to the min-cost flow problem
	The 4-layer graph G4
	The corresponding flow

	Proof of Claim 3.7 from Section 3
	Proof of Claim 3.8 from Section 3
	Proof of Claim 3.10 from Section 3
	Proof of Theorem 4.4 (Hardness of the Fair Christmas Game Problem)
	Full version of Claim 5.5, and its proof
	The full algorithm to find the shortest profitable operation
	Description of residual graphs and the Augmenting Cycle Theorem for multigraphs
	Proof of Lemma 5.7 from Section 5
	Cost details for Performance Evaluation

